-
Previous Article
Hyperbolic Navier-Stokes equations I: Local well-posedness
- EECT Home
- This Issue
-
Next Article
Modeling of a nonlinear plate
On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities
1. | Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-60120 Halle, Germany |
2. | Department of Mathematics and Research Institute of Science and Engineering, JST CREST, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan |
3. | Department of Mathematics, Shizuoka University, Shizuoka 422-8529, Japan |
4. | Department of Mathematics, Vanderbilt University, Nashville, TN 37240 |
References:
[1] |
D. Bothe, J. Prüss, $L_p$-theory for a class of non-Newtonian fluids, SIAM J. Math. Anal., 39 (2007), 379-421.
doi: 10.1137/060663635. |
[2] |
D. M. Anderson, P. Cermelli, E. Fried, M. E. Gurtin and G. B. McFadden, General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids, J. Fluid Mech., 581 (2007), 323-370.
doi: 10.1017/S0022112007005587. |
[3] |
E. DiBenedetto and A. Friedman, Conduction-convection problems with change of phase, J. Differential Equations, 62 (1986), 129-185. |
[4] |
E. DiBenedetto and M. O'Leary, Three-dimensional conduction-convection problems with change of phase, Arch. Rational Mech. Anal., 123 (1993), 99-116.
doi: 10.1007/BF00695273. |
[5] |
R. Denk, M. Hieber and J. Prüss, "$\mathcal R$-boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type," AMS Memoirs, 788, Providence, R.I., 2003. |
[6] |
R. Denk, M. Hieber and J. Prüss, Optimal $L^ p$-$L^ q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[7] |
K.-H. Hoffmann and V. N. Starovoitov, The Stefan problem with surface tension and convection in Stokes fluid, Adv. Math. Sci. Appl., 8 (1998), 173-183. |
[8] |
K.-H. Hoffmann and V. N. Starovoitov, Phase transitions of liquid-liquid type with convection, Adv. Math. Sci. Appl., 8 (1998), 185-198. |
[9] |
M. Ishii, "Thermo-Fluid Dynamics of Two-Phase Flow," Collection de la Direction des Etudes et Recherches d'Electricte de France, Paris, 1975. |
[10] |
M. Ishii and H. Takashi, "Thermo-Fluid Dynamics of Two-Phase Flow," Springer, New York, 2006. |
[11] |
M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Annalen, to appear. |
[12] |
Y. Kusaka, On a limit problem of the Stefan problem with surface tension in a viscous incompressible fluid flow, Adv. Math. Sci. Appl., 12 (2002), 665-683. |
[13] |
Y. Kusaka and A. Tani, On the classical solvability of the Stefan problem in a viscous incompressible fluid flow, SIAM J. Math. Anal., 30 (1999), 584-602 (electronic).
doi: 10.1137/S0036141098334936. |
[14] |
Y. Kusaka and A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow, Math. Models Methods Appl. Sci., 12 (2002), 365-391.
doi: 10.1142/S0218202502001696. |
[15] |
M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions, Math. Nachr., to appear. |
[16] |
J. Prüss, Maximal regularity for evolution equations in $L_p$-spacess, Conf. Sem. Mat. Univ. Bari, 285 (2003), 1-39. |
[17] |
J. Prüss and S. Shimizu, Incompressible two-phase flows with phase transition: Non-equal densities, submitted. |
[18] |
J. Prüss and G. Simonett, Maximal regularity for evolution equations in weighted $L_p$-spaces, Archiv Math., 82 (2004), 415-431. |
[19] |
J. Prüss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension, SIAM J. Math. Anal., 40 (2008), 675-698.
doi: 10.1137/070700632. |
[20] |
J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension, Interfaces & Free Bound, 12 (2010), 311-345. |
[21] |
J. Prüss and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension, Progr. Nonlin. Diff. Eqns. Appl., 80 (2011), 507-540. |
[22] |
J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension, arXiv:1101.3763, submitted. |
[23] |
Y. Shibata and S. Shimizu, Resolvent estimates and maximal regularity of the interface problem for the Stokes system in a bounded domain, preprint, 2009. |
[24] |
N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-capillary convection, Japan J. Mech., 21 (1995), 1-41. |
[25] |
H. Triebel, "Theory of Function Spaces II," Birkhäuser Verlag, Basel, 1992. |
show all references
References:
[1] |
D. Bothe, J. Prüss, $L_p$-theory for a class of non-Newtonian fluids, SIAM J. Math. Anal., 39 (2007), 379-421.
doi: 10.1137/060663635. |
[2] |
D. M. Anderson, P. Cermelli, E. Fried, M. E. Gurtin and G. B. McFadden, General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids, J. Fluid Mech., 581 (2007), 323-370.
doi: 10.1017/S0022112007005587. |
[3] |
E. DiBenedetto and A. Friedman, Conduction-convection problems with change of phase, J. Differential Equations, 62 (1986), 129-185. |
[4] |
E. DiBenedetto and M. O'Leary, Three-dimensional conduction-convection problems with change of phase, Arch. Rational Mech. Anal., 123 (1993), 99-116.
doi: 10.1007/BF00695273. |
[5] |
R. Denk, M. Hieber and J. Prüss, "$\mathcal R$-boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type," AMS Memoirs, 788, Providence, R.I., 2003. |
[6] |
R. Denk, M. Hieber and J. Prüss, Optimal $L^ p$-$L^ q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[7] |
K.-H. Hoffmann and V. N. Starovoitov, The Stefan problem with surface tension and convection in Stokes fluid, Adv. Math. Sci. Appl., 8 (1998), 173-183. |
[8] |
K.-H. Hoffmann and V. N. Starovoitov, Phase transitions of liquid-liquid type with convection, Adv. Math. Sci. Appl., 8 (1998), 185-198. |
[9] |
M. Ishii, "Thermo-Fluid Dynamics of Two-Phase Flow," Collection de la Direction des Etudes et Recherches d'Electricte de France, Paris, 1975. |
[10] |
M. Ishii and H. Takashi, "Thermo-Fluid Dynamics of Two-Phase Flow," Springer, New York, 2006. |
[11] |
M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Annalen, to appear. |
[12] |
Y. Kusaka, On a limit problem of the Stefan problem with surface tension in a viscous incompressible fluid flow, Adv. Math. Sci. Appl., 12 (2002), 665-683. |
[13] |
Y. Kusaka and A. Tani, On the classical solvability of the Stefan problem in a viscous incompressible fluid flow, SIAM J. Math. Anal., 30 (1999), 584-602 (electronic).
doi: 10.1137/S0036141098334936. |
[14] |
Y. Kusaka and A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow, Math. Models Methods Appl. Sci., 12 (2002), 365-391.
doi: 10.1142/S0218202502001696. |
[15] |
M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions, Math. Nachr., to appear. |
[16] |
J. Prüss, Maximal regularity for evolution equations in $L_p$-spacess, Conf. Sem. Mat. Univ. Bari, 285 (2003), 1-39. |
[17] |
J. Prüss and S. Shimizu, Incompressible two-phase flows with phase transition: Non-equal densities, submitted. |
[18] |
J. Prüss and G. Simonett, Maximal regularity for evolution equations in weighted $L_p$-spaces, Archiv Math., 82 (2004), 415-431. |
[19] |
J. Prüss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension, SIAM J. Math. Anal., 40 (2008), 675-698.
doi: 10.1137/070700632. |
[20] |
J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension, Interfaces & Free Bound, 12 (2010), 311-345. |
[21] |
J. Prüss and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension, Progr. Nonlin. Diff. Eqns. Appl., 80 (2011), 507-540. |
[22] |
J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension, arXiv:1101.3763, submitted. |
[23] |
Y. Shibata and S. Shimizu, Resolvent estimates and maximal regularity of the interface problem for the Stokes system in a bounded domain, preprint, 2009. |
[24] |
N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-capillary convection, Japan J. Mech., 21 (1995), 1-41. |
[25] |
H. Triebel, "Theory of Function Spaces II," Birkhäuser Verlag, Basel, 1992. |
[1] |
Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 |
[2] |
José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055 |
[3] |
Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315 |
[4] |
Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517 |
[5] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[6] |
Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143 |
[7] |
K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591 |
[8] |
Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439 |
[9] |
Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 |
[10] |
Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156 |
[11] |
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 |
[12] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[13] |
Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101 |
[14] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[15] |
Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158 |
[16] |
Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845 |
[17] |
Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331 |
[18] |
Jingjing Zhang, Ting Zhang. Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29 (4) : 2719-2739. doi: 10.3934/era.2021010 |
[19] |
Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437 |
[20] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3973-3987. doi: 10.3934/dcdss.2020467 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]