Citation: |
[1] |
N. U. Ahmed, "Semigroup Theory with Applications to Systems and Control," Pitman Research Notes in Mathematics Series, 246, Longman Scientific and Technical, U. K; Co-published with John-Wiely & Sons, Inc., New York, 1991. |
[2] |
N. U. Ahmed and X. Xiang, Differential inclusions on banach spaces and their optimal control, Nonlinear Funct. Anal.& Appl., 8 (2003), 461-488. |
[3] |
N. U. Ahmed, Optimal relaxed controls for systems governed by impulsive differential inclusions, Nonlinear Funct. Anal.& Appl., 10 (2005), 427-460. |
[4] |
N. U. Ahmed and C. D. Charalambous, Minimax games for stochastic systems subject to relative entropy uncertainty: Applications to SDE's on Hilbert spaces, J. Mathematics of Control, Signals and Systems, 19 (2007), 65-91.doi: 10.1007/s00498-006-0009-x. |
[5] |
N. U. Ahmed, Optimal output feedback boundary control for systems governed by semilinear parabolic inclusions: uncertain systems, Advances in Nonlinear Variational Inequalities, 11 (2008), 61-79. |
[6] |
N. U. Ahmed and Suruz Miah, Optimal feedback control law for a class of partially observed dynamic systems: a min-max problem, Dynamic Systems and Applications, 20 (2011), 149-168. |
[7] |
N. U. Ahmed and K. L. Teo, "Optimal Control of Distributed Parameter Systems," North Holland, New York, Oxford, 1981. |
[8] |
J. P. Aubin and H. Frankowska, "Set-Valued Analysis," Berkhauser, Boston, 1990. |
[9] |
L. Cesari, "Optimization Theory and Applications," Springer-Verlag, 1983.doi: 10.1007/978-1-4613-8165-5. |
[10] |
G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, 1992.doi: 10.1017/CBO9780511666223. |
[11] |
H. O. Fattorini, "Infinite Dimensional optimization and Control Theory," Encyclopedia of mathematics and its applications, 62, Cambridge University Press, 1999. |
[12] |
S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis," Kluwer Academic Publishers, Dordrecht, Boston, London, vol 1, 1997. |
[13] |
F. Mayoral, Compact sets of compact operators in absence of $l_1$, Proc. Am. Math. Soc., 129 (2001),79-82.doi: 10.1090/S0002-9939-00-06007-X. |
[14] |
E. Serrano, C. Pineiro and J. M. Delgado, Equicompact sets of operators defined on Banach spaces, Proc. Am. Math. Soc., 134 (2005), 689-695.doi: 10.1090/S0002-9939-05-08338-3. |
[15] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications," Fixed Point Theorems, Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest, Vol. 1, 1986. |