• Previous Article
    Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems
  • EECT Home
  • This Issue
  • Next Article
    Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach
December  2012, 1(2): 251-270. doi: 10.3934/eect.2012.1.251

Memory relaxation of type III thermoelastic extensible beams and Berger plates

1. 

Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, Via Bonardi 9, Milano 20133

2. 

Dipartimento di Matematica “Francesco Brioschi”, Politecnico di Milano, Via Bonardi 9, Milano 20133

Received  February 2012 Revised  July 2012 Published  October 2012

We analyze an abstract version of the evolution system ruling the dynamics of a memory relaxation of a type III thermoelastic extensible beam or Berger plate occupying a volume $\Omega$ \begin{equation} \begin{cases} u_{tt}-ωΔ u_{tt}+Δ^2 u-[b +||\nabla u\|^2_{L^2(\Omega)}]\Delta u+Δ α_t=g\\ α_{tt}-Δ α-∫_0^\infty u(s)Δ[α(t)-α(t-s)]d s-Δ u_t=0 \end{cases} \end{equation} subject to hinged boundary conditions for $u$ and to the Dirichlet boundary condition for $\alpha$, where the dissipation is entirely contributed by the convolution term in the second equation. The study of the asymptotic properties of the related solution semigroup is addressed.
Citation: Filippo Dell'Oro, Vittorino Pata. Memory relaxation of type III thermoelastic extensible beams and Berger plates. Evolution Equations and Control Theory, 2012, 1 (2) : 251-270. doi: 10.3934/eect.2012.1.251
References:
[1]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.

[3]

F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discrete Cont. Dyn. Systems, 22 (2008), 557-586. doi: 10.3934/dcds.2008.22.557.

[4]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.

[5]

C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), p.154301. doi: 10.1103/PhysRevLett.94.154301.

[6]

I. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems," Acta, Kharkov, 2002.

[7]

I. Chueshov and I. Lasiecka, Attractors and long-time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195-241. doi: 10.1007/s00245-007-9031-8.

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp.

[9]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720.

[10]

M. Coti Zelati, F. Dell'Oro and V. Pata, Energy decay of type III linear thermoelastic plates with memory, submitted.

[11]

M. Coti Zelati, V. Pata and R. Quintanilla, Regular global attractors of type III thermoelastic extensible beams, Chin. Ann. Math. Series B, 31 (2010), 619-630. doi: 10.1007/s11401-010-0605-4.

[12]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[13]

G. Fichera, Is the Fourier theory of heat propagation paradoxical?, Rend. Circ. Mat. Palermo, 41 (1992), 5-28.

[14]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117-1138. doi: 10.1216/RMJ-2008-38-4-1117.

[15]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 329-366. doi: 10.1017/S0308210509000365.

[16]

C. Giorgi, M. G. Naso, V. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Diff. Eqs, 246 (2009), 3496-3517. doi: 10.1016/j.jde.2009.02.020.

[17]

C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam, Nonlinearity, 21 (2008), 713-733. doi: 10.1088/0951-7715/21/4/004.

[18]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264. doi: 10.1080/01495739208946136.

[19]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208. doi: 10.1007/BF00044969.

[20]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics, Proc. Roy. Soc. London A, 448 (1995), 335-356. doi: 10.1098/rspa.1995.0020.

[21]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua, Proc. Roy. Soc. London A, 448 (1995), 357-377. doi: 10.1098/rspa.1995.0021.

[22]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua, Proc. Roy. Soc. London A, 448 (1995), 379-388. doi: 10.1098/rspa.1995.0022.

[23]

M. Grasselli and M. Squassina, Exponential stability and singular limit for a linear thermoelastic plate with memory effects, Adv. Math. Sci. Appl., 16 (2006), 15-31.

[24]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems," American Mathematical Society, Providence, 1988.

[25]

A. Haraux, "Syst\`emes Dynamiques Dissipatifs et Applications," Coll. RMA no.17, Masson, Paris, 1991.

[26]

O. A. Ladyzhenskaya, Finding minimal global attractors for the Navier-Stokes equations and other partial differential equations, Russian Math. Surveys, 42 (1987), 27-73. doi: 10.1070/RM1987v042n06ABEH001503.

[27]

V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.

[28]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333-360. doi: 10.1007/s00032-009-0098-3.

[29]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270. doi: 10.1016/j.jmaa.2010.07.006.

[30]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.

[31]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate, Commun. Pure Appl. Anal., 9 (2010), 161-192.

[32]

B. Straughan, "Heat Waves," Springer, New York, 2011.

[33]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1997.

[34]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.

show all references

References:
[1]

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.

[3]

F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discrete Cont. Dyn. Systems, 22 (2008), 557-586. doi: 10.3934/dcds.2008.22.557.

[4]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.

[5]

C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), p.154301. doi: 10.1103/PhysRevLett.94.154301.

[6]

I. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems," Acta, Kharkov, 2002.

[7]

I. Chueshov and I. Lasiecka, Attractors and long-time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195-241. doi: 10.1007/s00245-007-9031-8.

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp.

[9]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720.

[10]

M. Coti Zelati, F. Dell'Oro and V. Pata, Energy decay of type III linear thermoelastic plates with memory, submitted.

[11]

M. Coti Zelati, V. Pata and R. Quintanilla, Regular global attractors of type III thermoelastic extensible beams, Chin. Ann. Math. Series B, 31 (2010), 619-630. doi: 10.1007/s11401-010-0605-4.

[12]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[13]

G. Fichera, Is the Fourier theory of heat propagation paradoxical?, Rend. Circ. Mat. Palermo, 41 (1992), 5-28.

[14]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117-1138. doi: 10.1216/RMJ-2008-38-4-1117.

[15]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 329-366. doi: 10.1017/S0308210509000365.

[16]

C. Giorgi, M. G. Naso, V. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Diff. Eqs, 246 (2009), 3496-3517. doi: 10.1016/j.jde.2009.02.020.

[17]

C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam, Nonlinearity, 21 (2008), 713-733. doi: 10.1088/0951-7715/21/4/004.

[18]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264. doi: 10.1080/01495739208946136.

[19]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208. doi: 10.1007/BF00044969.

[20]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics, Proc. Roy. Soc. London A, 448 (1995), 335-356. doi: 10.1098/rspa.1995.0020.

[21]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua, Proc. Roy. Soc. London A, 448 (1995), 357-377. doi: 10.1098/rspa.1995.0021.

[22]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua, Proc. Roy. Soc. London A, 448 (1995), 379-388. doi: 10.1098/rspa.1995.0022.

[23]

M. Grasselli and M. Squassina, Exponential stability and singular limit for a linear thermoelastic plate with memory effects, Adv. Math. Sci. Appl., 16 (2006), 15-31.

[24]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems," American Mathematical Society, Providence, 1988.

[25]

A. Haraux, "Syst\`emes Dynamiques Dissipatifs et Applications," Coll. RMA no.17, Masson, Paris, 1991.

[26]

O. A. Ladyzhenskaya, Finding minimal global attractors for the Navier-Stokes equations and other partial differential equations, Russian Math. Surveys, 42 (1987), 27-73. doi: 10.1070/RM1987v042n06ABEH001503.

[27]

V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.

[28]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333-360. doi: 10.1007/s00032-009-0098-3.

[29]

V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264-270. doi: 10.1016/j.jmaa.2010.07.006.

[30]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.

[31]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate, Commun. Pure Appl. Anal., 9 (2010), 161-192.

[32]

B. Straughan, "Heat Waves," Springer, New York, 2011.

[33]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1997.

[34]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.

[1]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[2]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[3]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220

[4]

Philippe Jaming, Vilmos Komornik. Moving and oblique observations of beams and plates. Evolution Equations and Control Theory, 2020, 9 (2) : 447-468. doi: 10.3934/eect.2020013

[5]

Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 935-955. doi: 10.3934/dcdsb.2019197

[6]

Maria Grazia Naso. Controllability to trajectories for semilinear thermoelastic plates. Conference Publications, 2005, 2005 (Special) : 672-681. doi: 10.3934/proc.2005.2005.672

[7]

Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274

[8]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure and Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[9]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[10]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[11]

Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383

[12]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[13]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[14]

M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283

[15]

Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[17]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic and Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[18]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[19]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[20]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure and Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]