Citation: |
[1] |
H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.doi: 10.1016/0362-546X(80)90068-1. |
[2] |
T. Cazenave, "Semilinear Schrödinger Equations,'' Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, 2003. |
[3] |
T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,'' Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998. |
[4] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.doi: 10.1007/BF01258601. |
[5] |
T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18-29, Lecture Notes in Math., 1394, Springer, Berlin, 1989. |
[6] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.doi: 10.1016/0362-546X(90)90023-A. |
[7] |
J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32.doi: 10.1016/0022-1236(79)90076-4. |
[8] |
J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 309-323. |
[9] |
M. J. Goldberg, L. Vega and N. Visciglia, Couterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math. Res. Not., (2006), Art. ID 13927, 16 pp. |
[10] |
H. Hoshino and Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-494. |
[11] |
R. Ikehata and N. Okazawa, Yosida approximation and nonlinear hyperbolic equation, Nonlinear Anal., 15 (1990), 479-495.doi: 10.1016/0362-546X(90)90128-4. |
[12] |
T. Kato, "Perturbation Theory for Linear Operators," Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[13] |
T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129. |
[14] |
T. Kato, Nonlinear Schrödinger equations, in "Schrödinger Operators" (Eds. H. Holden and A. Jensen), in Lecture Notes in Physics, Springer, Berlin, 345 (1989), 218-263. |
[15] |
T. Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281-306.doi: 10.1007/BF02787794. |
[16] |
Y. Maeda and N. Okazawa, Holomorphic families of Schrödinger operators in $L^p$, SUT J. Math., 47 (2011), 185-216. |
[17] |
T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal., 14 (1990), 765-769.doi: 10.1016/0362-546X(90)90104-O. |
[18] |
M. Ohta, Instability of bound states for abstract nonlinear Schrödinger equations, J. Funct. Anal., 261 (2011), 90-110.doi: 10.1016/j.jfa.2011.03.010. |
[19] |
N. Okazawa, $L^p$-theory of Schrödinger operators with strongly singular potentials, Japan. J. Math., 22 (1996), 199-239. |
[20] |
N.\,Okazawa, Gauss hypergeometric functions of operators unifying fractional powers and logarithms, Semigroups of Operators: Theory and Applications (Rio de Janeiro, 2001), 209-219, Optimization Software, New York, 2002. |
[21] |
N. Okazawa, T. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.doi: 10.1080/00036811.2011.631914). |
[22] |
Z. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, Grenoble, 45 (1995), 513-546.doi: 10.5802/aif.1463. |
[23] |
T. Suzuki, Energy methods for Hartree type equations with inverse-square potentials, preprint. |
[24] |
H. Tanabe, "Equations of Evolution,'' Monographs and Studies in Mathematics vol. 6, Pitman, London, 1979. |
[25] |
Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. |
[26] |
Y. Tsutsumi, Global strong solutions for nonlinear Schrödinger equations, Nonlinear Anal., 11 (1987), 1143-1154.doi: 10.1016/0362-546X(87)90003-4. |
[27] |
F. B. Weissler, Local existence and nonexistence for semilinear parabolic equation in $L^p$, Indiana Univ. Math. J., 29 (1980), 79-102.doi: 10.1512/iumj.1980.29.29007. |