December  2012, 1(2): 393-429. doi: 10.3934/eect.2012.1.393

$L_p$-theory for a Cahn-Hilliard-Gurtin system

1. 

Institut für Mathematik, Martin-Luther Universität Halle-Wittenberg, 06099 Halle, Germany

Received  March 2012 Revised  June 2012 Published  October 2012

In this paper we study a generalized Cahn-Hilliard equation which was proposed by Gurtin [9]. We prove the existence and uniqueness of a local-in-time solution for a quasilinear version, that is, if the coefficients depend on the solution and its gradient. Moreover we show that local solutions to the corresponding semilinear problem exist globally as long as the physical potential satisfies certain growth conditions. Finally we study the long-time behaviour of the solutions and show that each solution converges to a equilibrium as time tends to infinity.
Citation: Mathias Wilke. $L_p$-theory for a Cahn-Hilliard-Gurtin system. Evolution Equations and Control Theory, 2012, 1 (2) : 393-429. doi: 10.3934/eect.2012.1.393
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (eds. H.-J. Schmeisser and H. Triebel), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9-126.

[2]

H. Amann, "Linear and Quasilinear Parabolic Problems," Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston Inc., Boston, MA, 1995.

[3]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania 2000), 47 (2001), 3455-3466.

[4]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.

[5]

R. Denk, M. Hieber and J. Prüss, $\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114.

[6]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224. doi: 10.1007/s00209-007-0120-9.

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.

[8]

M. Girardi and L. Weis, Criteria for R-boundedness of operator families, Evolution equations, Lecture Notes in Pure and Appl. Math., Dekker, New York, 234 (2003), 203-221.

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.

[10]

N. J. Kalton and L. Weis, The $H^ \infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345. doi: 10.1007/s002080100231.

[11]

M. Köhne, J. Prüss and M. Wilke, On quasilinear parabolic evolution equations in weighted $L_p$-spaces, J. Evol. Equ., 10 (2010), 443-463. doi: 10.1007/s00028-010-0056-0.

[12]

A. Miranville, Existence of solutions for a Cahn-Hilliard-Gurtin model, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 845-850. doi: 10.1016/S0764-4442(00)01731-6.

[13]

A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance, J. Appl. Math., (2003), 165-185.

[14]

A. Miranville, A. Piétrus and J. M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance, Asymptot. Anal., 16 (1998), 315-345.

[15]

A. Miranville and A. Rougirel, Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations, Z. Angew. Math. Phys., 57 (2006), 244-268. doi: 10.1007/s00033-005-0017-6.

[16]

A. Miranville and S. Zelik, Doubly nonlinear Cahn-Hilliard-Gurtin equations, Hokkaido Math. J., 38 (2009), 315-360.

[17]

A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions, Phys. D, 158 (2001), 233-257. doi: 10.1016/S0167-2789(01)00317-7.

[18]

A. Miranville and A. Piétrus, A new formulation of the Cahn-Hilliard equation, Nonlinear Anal. Real World Appl., 7 (2006), 285-307.

[19]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z., 203 (1990), 429-452. doi: 10.1007/BF02570748.

[20]

J. Prüss and M. Wilke, On conserved Penrose-Fife type systems, Parabolic Problems, The Herbert Amann Festschrift, Progress in nonlinear differential equations and their applications, Birkhäuser, Basel, 80 (2011), 541-576.

[21]

R. Seeley, Interpolation in $L^p$ with boundary conditions, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. Studia Math., 44 (1972), 47-60.

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (eds. H.-J. Schmeisser and H. Triebel), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9-126.

[2]

H. Amann, "Linear and Quasilinear Parabolic Problems," Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston Inc., Boston, MA, 1995.

[3]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania 2000), 47 (2001), 3455-3466.

[4]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.

[5]

R. Denk, M. Hieber and J. Prüss, $\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114.

[6]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224. doi: 10.1007/s00209-007-0120-9.

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.

[8]

M. Girardi and L. Weis, Criteria for R-boundedness of operator families, Evolution equations, Lecture Notes in Pure and Appl. Math., Dekker, New York, 234 (2003), 203-221.

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.

[10]

N. J. Kalton and L. Weis, The $H^ \infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345. doi: 10.1007/s002080100231.

[11]

M. Köhne, J. Prüss and M. Wilke, On quasilinear parabolic evolution equations in weighted $L_p$-spaces, J. Evol. Equ., 10 (2010), 443-463. doi: 10.1007/s00028-010-0056-0.

[12]

A. Miranville, Existence of solutions for a Cahn-Hilliard-Gurtin model, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 845-850. doi: 10.1016/S0764-4442(00)01731-6.

[13]

A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance, J. Appl. Math., (2003), 165-185.

[14]

A. Miranville, A. Piétrus and J. M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance, Asymptot. Anal., 16 (1998), 315-345.

[15]

A. Miranville and A. Rougirel, Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations, Z. Angew. Math. Phys., 57 (2006), 244-268. doi: 10.1007/s00033-005-0017-6.

[16]

A. Miranville and S. Zelik, Doubly nonlinear Cahn-Hilliard-Gurtin equations, Hokkaido Math. J., 38 (2009), 315-360.

[17]

A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions, Phys. D, 158 (2001), 233-257. doi: 10.1016/S0167-2789(01)00317-7.

[18]

A. Miranville and A. Piétrus, A new formulation of the Cahn-Hilliard equation, Nonlinear Anal. Real World Appl., 7 (2006), 285-307.

[19]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z., 203 (1990), 429-452. doi: 10.1007/BF02570748.

[20]

J. Prüss and M. Wilke, On conserved Penrose-Fife type systems, Parabolic Problems, The Herbert Amann Festschrift, Progress in nonlinear differential equations and their applications, Birkhäuser, Basel, 80 (2011), 541-576.

[21]

R. Seeley, Interpolation in $L^p$ with boundary conditions, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. Studia Math., 44 (1972), 47-60.

[1]

Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675

[2]

Sami Injrou, Morgan Pierre. Stable discretizations of the Cahn-Hilliard-Gurtin equations. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1065-1080. doi: 10.3934/dcds.2008.22.1065

[3]

Gisèle Ruiz Goldstein, Alain Miranville. A Cahn-Hilliard-Gurtin model with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 387-400. doi: 10.3934/dcdss.2013.6.387

[4]

Michel Pierre, Morgan Pierre. Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5347-5377. doi: 10.3934/dcds.2013.33.5347

[5]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[6]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[7]

Guoqiang Ren, Bin Liu. Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 759-779. doi: 10.3934/dcds.2021136

[8]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[9]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[10]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

[11]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[12]

Matthieu Brachet, Philippe Parnaudeau, Morgan Pierre. Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1987-2031. doi: 10.3934/dcdss.2022110

[13]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[14]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[15]

Abderrahmane Youkana, Salim A. Messaoudi. General and optimal decay for a quasilinear parabolic viscoelastic system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1307-1316. doi: 10.3934/dcdss.2021129

[16]

Federica Mennuni, Addolorata Salvatore. Existence of minimizers for a quasilinear elliptic system of gradient type. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022013

[17]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

[18]

Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117

[19]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[20]

Masahiro Kubo, Noriaki Yamazaki. Elliptic-parabolic variational inequalities with time-dependent constraints. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 335-359. doi: 10.3934/dcds.2007.19.335

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]