June  2012, 1(1): 43-56. doi: 10.3934/eect.2012.1.43

Invariance for stochastic reaction-diffusion equations

1. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scienti ca 1, I-00133 Roma, Italy

2. 

Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56125 Pisa, Italy

Received  December 2011 Revised  February 2012 Published  March 2012

Given a stochastic reaction-diffusion equation on a bounded open subset $\mathcal O$ of $\mathbb{R}^n$, we discuss conditions for the invariance of a nonempty closed convex subset $K$ of $L^2(\mathcal O)$ under the corresponding flow. We obtain two general results under the assumption that the fourth power of the distance from $K$ is of class $C^2$, providing, respectively, a necessary and a sufficient condition for invariance. We also study the example where $K$ is the cone of all nonnegative functions in $L^2(\mathcal O)$.
Citation: Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43
References:
[1]

S. Agmon, "Lectures on Elliptic Boundary Value Problems," Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr., Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London, 1965.  Google Scholar

[2]

P. Cannarsa and G. Da Prato, Stochastic viability for regular closed sets in Hilbert spaces, Rend. Lincei Math. Appl., 22 (2011), 1-10. Google Scholar

[3]

S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields, 125 (2003), 271-304. doi: 10.1007/s00440-002-0230-6.  Google Scholar

[4]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert Spaces," London Mathematical Society Lecture Notes, 293, Cambridge University Press, Cambridge, 2002.  Google Scholar

[6]

L. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.  Google Scholar

[7]

D. Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Comm. Partial Differential Equations, 27 (2002), 1283-1299.  Google Scholar

[8]

S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab., 23 (1995), 157-172. doi: 10.1214/aop/1176988381.  Google Scholar

show all references

References:
[1]

S. Agmon, "Lectures on Elliptic Boundary Value Problems," Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr., Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London, 1965.  Google Scholar

[2]

P. Cannarsa and G. Da Prato, Stochastic viability for regular closed sets in Hilbert spaces, Rend. Lincei Math. Appl., 22 (2011), 1-10. Google Scholar

[3]

S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields, 125 (2003), 271-304. doi: 10.1007/s00440-002-0230-6.  Google Scholar

[4]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert Spaces," London Mathematical Society Lecture Notes, 293, Cambridge University Press, Cambridge, 2002.  Google Scholar

[6]

L. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.  Google Scholar

[7]

D. Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Comm. Partial Differential Equations, 27 (2002), 1283-1299.  Google Scholar

[8]

S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab., 23 (1995), 157-172. doi: 10.1214/aop/1176988381.  Google Scholar

[1]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[2]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020087

[3]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009

[4]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Dingshi Li, Xuemin Wang. Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29 (2) : 1969-1990. doi: 10.3934/era.2020100

[7]

Peter E. Kloeden, Meihua Yang. Forward attracting sets of reaction-diffusion equations on variable domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1259-1271. doi: 10.3934/dcdsb.2019015

[8]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[9]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[10]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021137

[11]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[12]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[13]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[14]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[15]

Fuzhi Li, Yangrong Li, Renhai Wang. Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3663-3685. doi: 10.3934/dcds.2018158

[16]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[17]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[18]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]