-
Previous Article
Approximation of a semigroup model of anomalous diffusion in a bounded set
- EECT Home
- This Issue
-
Next Article
A variational approach to approximate controls for system with essential spectrum: Application to membranal arch
Simultaneous stabilization of a system of interacting plate and membrane
1. | Department of Mathematics & Statistics, Florida International University, Miami, FL 33199 |
References:
[1] |
F. Alabau-Boussouira, Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation. J. Evol. Equ. 6 (2006), 95-112.
doi: 10.1007/s00028-005-0230-y. |
[2] |
F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., 41 (2002), 511-541.
doi: 10.1137/S0363012901385368. |
[3] |
F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled systems, J. Evolution Equations, 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[4] |
W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306 (1988), 837-852.
doi: 10.2307/2000826. |
[5] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control and Opt. 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[6] |
A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440.
doi: 10.1002/mana.200410429. |
[7] |
H. Brezis, "Analyse fonctionnelle," Théorie et Applications. Masson, Paris 1983. |
[8] |
G. Chen, Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17 (1979), 66-81.
doi: 10.1137/0317007. |
[9] |
G. Chen, S.A. Fulling, F.J. Narcowich, and S. Sun, Exponential decay of energy of evolution equations with locally distributed damping, SIAM J. Appl. Math. 51 (1991), 266-301.
doi: 10.1137/0151015. |
[10] |
C.M. Dafermos, Asymptotic behaviour of solutions of evolution equations, in "Nonlinear evolution equations"(M.G. Crandall ed.) pp. 103-123, Academic Press, New-York, 1978. |
[11] |
X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping. Z. Angew. Math. Phys. 62 (2011), 667-680.
doi: 10.1007/s00033-010-0113-0. |
[12] |
X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping. Comm. Partial Differential Equations 34 (2009), 957-975.
doi: 10.1080/03605300903116389. |
[13] |
J. S. Gibson, A note on stabilization of infinite dimensional linear oscillators by compact linear feedback, SIAM J. Control Optim., 18 (1980), 311-316.
doi: 10.1137/0318022. |
[14] |
A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59(1985), 145-154.
doi: 10.1016/0022-0396(85)90151-2. |
[15] |
A. Haraux, On a completion problem in the theory of distributed control of wave equations. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. X (Paris, 1987-1988), 241-271, Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991. |
[16] |
A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal. Math. 46 (1989), 245-258. |
[17] |
F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56. |
[18] |
V. Komornik, Rapid boundary stabilization of the wave equation. SIAM J. Control Optim. 29 (1991), 197-208.
doi: 10.1137/0329011. |
[19] |
V. Komornik, "Exact controllability and stabilization. The multiplier method," RAM, Masson $&$ John Wiley, Paris, 1994. |
[20] |
V. Komornik, Rapid boundary stabilization of linear distributed systems. SIAM J. Control Optim. 35 (1997), 1591-1613.
doi: 10.1137/S0363012996301609. |
[21] |
V. Komornik, E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69 (1990), 33-54. |
[22] |
J. Lagnese, Boundary stabilization of linear elastodynamic systems, S.I.A.M J. Control and Opt., 21 (1983), 968-984.
doi: 10.1137/0321059. |
[23] |
J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differential Equations 50 (1983), 163-182.
doi: 10.1016/0022-0396(83)90073-6. |
[24] |
J. Lagnese, "Boundary Stabilization of Thin Plates," SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970821. |
[25] |
I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only. J. Differential Equations 95 (1992), 169-182.
doi: 10.1016/0022-0396(92)90048-R. |
[26] |
I. Lasiecka, Nonlinear boundary feedback stabilization of dynamic elasticity with thermal effects. Shape optimization and optimal design (Cambridge, 1999), 333-354, Lecture Notes in Pure and Appl. Math., 216, Dekker, New York, 2001. |
[27] |
I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differential Integral Equations 6 (1993), 507-533. |
[28] |
I. Lasiecka, D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal. 64(2006), 1757-1797.
doi: 10.1016/j.na.2005.07.024. |
[29] |
I. Lasiecka, R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L^2 (0,\infty;L^2 (\Gamma))$ -feedback control in the Dirichlet boundary conditions. J. Differential Equations 66 (1987), 340-390.
doi: 10.1016/0022-0396(87)90025-8. |
[30] |
I. Lasiecka, R. Triggiani, Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optim. 19 (1989), 243-290.
doi: 10.1007/BF01448201. |
[31] |
I. Lasiecka, R. Triggiani, Exact controllability and uniform stabilization of Kirchoff [Kirchhoff] plates with boundary control only on $\Delta w|_\Sigma$ and homogeneous boundary displacement. J. Differential Equations 93 (1991), 62-101.
doi: 10.1016/0022-0396(91)90022-2. |
[32] |
I. Lasiecka, R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25 (1992), 189-224.
doi: 10.1007/BF01182480. |
[33] |
I. Lasiecka, R. Triggiani, $L^2 (\Sigma)$-regularity of the boundary to boundary operator $B * L$ for hyperbolic and Petrowski PDEs. Abstr. Appl. Anal. 2003, 19 (2003), 1061-1139.
doi: 10.1155/S1085337503305032. |
[34] |
G. Lebeau, Equation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), 73-109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. |
[35] |
G. Lebeau, L. Robbiano, Stabilisation de l'équation des ondes par le bord. Duke Math. J. 86 (1997), 465-491.
doi: 10.1215/S0012-7094-97-08614-2. |
[36] |
J.-L. Lions, "Contrôlabilité exacte, Perturbations et Stabilisation des Systèmes Distribués," Vol. 1, RMA 8, Masson, Paris, 1988. |
[37] |
K. Liu, Locally distributed control and damping for the conservative systems, S.I.A.M J. Control and Opt. 35 (1997), 1574-1590.
doi: 10.1137/S0363012995284928. |
[38] |
K. Liu, B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping. Z. Angew. Math. Phys. 57 (2006), 419-432.
doi: 10.1007/s00033-005-0029-2. |
[39] | |
[40] |
P. Martinez, Boundary stabilization of the wave equation in almost star-shaped domains. SIAM J. Control Optim. 37 (1999), 673-94.
doi: 10.1137/S0363012997323722. |
[41] |
M. Nakao, Decay of solutions of the wave equation with a local degenerate dissipation, Israel J. Math. 95 (1996), 25-42.
doi: 10.1007/BF02761033. |
[42] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[43] |
K. D. Phung, Polynomial decay rate for the dissipative wave equation. J. Differential Equations 240 (2007), 92-124.
doi: 10.1016/j.jde.2007.05.016. |
[44] |
K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete Contin. Dyn. Syst. 20 (2008), 1057-1093.
doi: 10.3934/dcds.2008.20.1057. |
[45] |
J. Prüss, On the spectrum of $C_0$-semigroups. Trans. Amer. Math. Soc. 284 (1984), 847-857.
doi: 10.2307/1999112. |
[46] |
J. Rauch, M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24 (1974), 79-86. |
[47] |
D.L. Russell, Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory, J. Math. Anal. Appl., 40 (1972), 336-368. |
[48] |
D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978), no. 4, 639-739.
doi: 10.1137/1020095. |
[49] |
D.L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986), 199-229.
doi: 10.1137/0324012. |
[50] |
M. Slemrod, Weak asymptotic decay via a "Relaxed invariance principle" for a wave equation with nonlinear, nonmonotone damping. Proc. Royal Soc. Edinburgh Sect. A 113(1989), 87-97.
doi: 10.1017/S0308210500023970. |
[51] |
L.R. Tcheugoué Tébou, Sur la stabilisation de l'équation des ondes en dimension 2. C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 6, 585-588. |
[52] |
L.R. Tcheugoué Tébou, On the decay estimates for the wave equation with a local degenerate or nondegenerate dissipation, Portugal. Math.,55 (1998), 293-306. |
[53] |
L.R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J.D.E. 145(1998), 502-524.
doi: 10.1006/jdeq.1998.3416. |
[54] |
L.R. Tcheugoué Tébou, Well-posedness and energy decay estimates for the damped wave equation with L$^r$ localizing coefficient, Comm. in P.D.E., 23 (1998), 1839-1855.
doi: 10.1080/03605309808821403. |
[55] |
L. R. Tcheugoué Tébou, Energy decay estimates for the damped Euler-Bernoulli equation with an unbounded localizing coefficient, Portugal. Math. 61 (2004), 375-391. |
[56] |
L. R. Tcheugoue Tebou, On the stabilization of dynamic elasticity equations with unbounded locally distributed dissipation. Differential Integral Equations 19 (2006), 785-798. |
[57] |
L. Tebou, Stabilization of the elastodynamic equations with a degenerate locally distributed dissipation. Systems Control Lett. 56 (2007), 538-545.
doi: 10.1016/j.sysconle.2007.03.003. |
[58] |
L. Tebou, Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the p-Laplacian. DCDS A, 32 (2012), 2315-2337.
doi: 10.3934/dcds.2012.32.2315. |
[59] |
L. Tebou, Simultaneous observability and stabilization of some uncoupled wave equations. C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 57-62.
doi: 10.1016/j.crma.2011.12.001. |
[60] |
L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. MCRF, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
[61] |
R. Triggiani, Lack of uniform stabilization for noncontractive semigroups under compact perturbation, Proc. Amer. Math. Soc., 105 (1989), 375-383.
doi: 10.2307/2046953. |
[62] |
E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim. 28 (1990), 466-477.
doi: 10.1137/0328025. |
[63] |
E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Commun. P.D.E., 15 (1990), 205-235.
doi: 10.1080/03605309908820684. |
[64] |
E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures. Appl., 70 (1991), 513-529. |
show all references
References:
[1] |
F. Alabau-Boussouira, Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation. J. Evol. Equ. 6 (2006), 95-112.
doi: 10.1007/s00028-005-0230-y. |
[2] |
F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., 41 (2002), 511-541.
doi: 10.1137/S0363012901385368. |
[3] |
F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled systems, J. Evolution Equations, 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[4] |
W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306 (1988), 837-852.
doi: 10.2307/2000826. |
[5] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control and Opt. 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[6] |
A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440.
doi: 10.1002/mana.200410429. |
[7] |
H. Brezis, "Analyse fonctionnelle," Théorie et Applications. Masson, Paris 1983. |
[8] |
G. Chen, Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17 (1979), 66-81.
doi: 10.1137/0317007. |
[9] |
G. Chen, S.A. Fulling, F.J. Narcowich, and S. Sun, Exponential decay of energy of evolution equations with locally distributed damping, SIAM J. Appl. Math. 51 (1991), 266-301.
doi: 10.1137/0151015. |
[10] |
C.M. Dafermos, Asymptotic behaviour of solutions of evolution equations, in "Nonlinear evolution equations"(M.G. Crandall ed.) pp. 103-123, Academic Press, New-York, 1978. |
[11] |
X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping. Z. Angew. Math. Phys. 62 (2011), 667-680.
doi: 10.1007/s00033-010-0113-0. |
[12] |
X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping. Comm. Partial Differential Equations 34 (2009), 957-975.
doi: 10.1080/03605300903116389. |
[13] |
J. S. Gibson, A note on stabilization of infinite dimensional linear oscillators by compact linear feedback, SIAM J. Control Optim., 18 (1980), 311-316.
doi: 10.1137/0318022. |
[14] |
A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59(1985), 145-154.
doi: 10.1016/0022-0396(85)90151-2. |
[15] |
A. Haraux, On a completion problem in the theory of distributed control of wave equations. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. X (Paris, 1987-1988), 241-271, Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991. |
[16] |
A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal. Math. 46 (1989), 245-258. |
[17] |
F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56. |
[18] |
V. Komornik, Rapid boundary stabilization of the wave equation. SIAM J. Control Optim. 29 (1991), 197-208.
doi: 10.1137/0329011. |
[19] |
V. Komornik, "Exact controllability and stabilization. The multiplier method," RAM, Masson $&$ John Wiley, Paris, 1994. |
[20] |
V. Komornik, Rapid boundary stabilization of linear distributed systems. SIAM J. Control Optim. 35 (1997), 1591-1613.
doi: 10.1137/S0363012996301609. |
[21] |
V. Komornik, E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69 (1990), 33-54. |
[22] |
J. Lagnese, Boundary stabilization of linear elastodynamic systems, S.I.A.M J. Control and Opt., 21 (1983), 968-984.
doi: 10.1137/0321059. |
[23] |
J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differential Equations 50 (1983), 163-182.
doi: 10.1016/0022-0396(83)90073-6. |
[24] |
J. Lagnese, "Boundary Stabilization of Thin Plates," SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970821. |
[25] |
I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only. J. Differential Equations 95 (1992), 169-182.
doi: 10.1016/0022-0396(92)90048-R. |
[26] |
I. Lasiecka, Nonlinear boundary feedback stabilization of dynamic elasticity with thermal effects. Shape optimization and optimal design (Cambridge, 1999), 333-354, Lecture Notes in Pure and Appl. Math., 216, Dekker, New York, 2001. |
[27] |
I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differential Integral Equations 6 (1993), 507-533. |
[28] |
I. Lasiecka, D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal. 64(2006), 1757-1797.
doi: 10.1016/j.na.2005.07.024. |
[29] |
I. Lasiecka, R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L^2 (0,\infty;L^2 (\Gamma))$ -feedback control in the Dirichlet boundary conditions. J. Differential Equations 66 (1987), 340-390.
doi: 10.1016/0022-0396(87)90025-8. |
[30] |
I. Lasiecka, R. Triggiani, Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optim. 19 (1989), 243-290.
doi: 10.1007/BF01448201. |
[31] |
I. Lasiecka, R. Triggiani, Exact controllability and uniform stabilization of Kirchoff [Kirchhoff] plates with boundary control only on $\Delta w|_\Sigma$ and homogeneous boundary displacement. J. Differential Equations 93 (1991), 62-101.
doi: 10.1016/0022-0396(91)90022-2. |
[32] |
I. Lasiecka, R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25 (1992), 189-224.
doi: 10.1007/BF01182480. |
[33] |
I. Lasiecka, R. Triggiani, $L^2 (\Sigma)$-regularity of the boundary to boundary operator $B * L$ for hyperbolic and Petrowski PDEs. Abstr. Appl. Anal. 2003, 19 (2003), 1061-1139.
doi: 10.1155/S1085337503305032. |
[34] |
G. Lebeau, Equation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), 73-109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. |
[35] |
G. Lebeau, L. Robbiano, Stabilisation de l'équation des ondes par le bord. Duke Math. J. 86 (1997), 465-491.
doi: 10.1215/S0012-7094-97-08614-2. |
[36] |
J.-L. Lions, "Contrôlabilité exacte, Perturbations et Stabilisation des Systèmes Distribués," Vol. 1, RMA 8, Masson, Paris, 1988. |
[37] |
K. Liu, Locally distributed control and damping for the conservative systems, S.I.A.M J. Control and Opt. 35 (1997), 1574-1590.
doi: 10.1137/S0363012995284928. |
[38] |
K. Liu, B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping. Z. Angew. Math. Phys. 57 (2006), 419-432.
doi: 10.1007/s00033-005-0029-2. |
[39] | |
[40] |
P. Martinez, Boundary stabilization of the wave equation in almost star-shaped domains. SIAM J. Control Optim. 37 (1999), 673-94.
doi: 10.1137/S0363012997323722. |
[41] |
M. Nakao, Decay of solutions of the wave equation with a local degenerate dissipation, Israel J. Math. 95 (1996), 25-42.
doi: 10.1007/BF02761033. |
[42] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[43] |
K. D. Phung, Polynomial decay rate for the dissipative wave equation. J. Differential Equations 240 (2007), 92-124.
doi: 10.1016/j.jde.2007.05.016. |
[44] |
K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete Contin. Dyn. Syst. 20 (2008), 1057-1093.
doi: 10.3934/dcds.2008.20.1057. |
[45] |
J. Prüss, On the spectrum of $C_0$-semigroups. Trans. Amer. Math. Soc. 284 (1984), 847-857.
doi: 10.2307/1999112. |
[46] |
J. Rauch, M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24 (1974), 79-86. |
[47] |
D.L. Russell, Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory, J. Math. Anal. Appl., 40 (1972), 336-368. |
[48] |
D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978), no. 4, 639-739.
doi: 10.1137/1020095. |
[49] |
D.L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986), 199-229.
doi: 10.1137/0324012. |
[50] |
M. Slemrod, Weak asymptotic decay via a "Relaxed invariance principle" for a wave equation with nonlinear, nonmonotone damping. Proc. Royal Soc. Edinburgh Sect. A 113(1989), 87-97.
doi: 10.1017/S0308210500023970. |
[51] |
L.R. Tcheugoué Tébou, Sur la stabilisation de l'équation des ondes en dimension 2. C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 6, 585-588. |
[52] |
L.R. Tcheugoué Tébou, On the decay estimates for the wave equation with a local degenerate or nondegenerate dissipation, Portugal. Math.,55 (1998), 293-306. |
[53] |
L.R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J.D.E. 145(1998), 502-524.
doi: 10.1006/jdeq.1998.3416. |
[54] |
L.R. Tcheugoué Tébou, Well-posedness and energy decay estimates for the damped wave equation with L$^r$ localizing coefficient, Comm. in P.D.E., 23 (1998), 1839-1855.
doi: 10.1080/03605309808821403. |
[55] |
L. R. Tcheugoué Tébou, Energy decay estimates for the damped Euler-Bernoulli equation with an unbounded localizing coefficient, Portugal. Math. 61 (2004), 375-391. |
[56] |
L. R. Tcheugoue Tebou, On the stabilization of dynamic elasticity equations with unbounded locally distributed dissipation. Differential Integral Equations 19 (2006), 785-798. |
[57] |
L. Tebou, Stabilization of the elastodynamic equations with a degenerate locally distributed dissipation. Systems Control Lett. 56 (2007), 538-545.
doi: 10.1016/j.sysconle.2007.03.003. |
[58] |
L. Tebou, Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the p-Laplacian. DCDS A, 32 (2012), 2315-2337.
doi: 10.3934/dcds.2012.32.2315. |
[59] |
L. Tebou, Simultaneous observability and stabilization of some uncoupled wave equations. C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 57-62.
doi: 10.1016/j.crma.2011.12.001. |
[60] |
L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. MCRF, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
[61] |
R. Triggiani, Lack of uniform stabilization for noncontractive semigroups under compact perturbation, Proc. Amer. Math. Soc., 105 (1989), 375-383.
doi: 10.2307/2046953. |
[62] |
E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim. 28 (1990), 466-477.
doi: 10.1137/0328025. |
[63] |
E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Commun. P.D.E., 15 (1990), 205-235.
doi: 10.1080/03605309908820684. |
[64] |
E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures. Appl., 70 (1991), 513-529. |
[1] |
Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 |
[2] |
Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315 |
[3] |
Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45 |
[4] |
Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675 |
[5] |
Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057 |
[6] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
[7] |
Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303 |
[8] |
Bei Gong, Zhen-Hu Ning, Fengyan Yang. Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $. Evolution Equations and Control Theory, 2021, 10 (2) : 321-331. doi: 10.3934/eect.2020068 |
[9] |
Valentin Keyantuo, Louis Tebou, Mahamadi Warma. A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2875-2889. doi: 10.3934/dcds.2020152 |
[10] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[11] |
Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022046 |
[12] |
Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731 |
[13] |
Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459 |
[14] |
Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029 |
[15] |
Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425 |
[16] |
Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029 |
[17] |
Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021059 |
[18] |
Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic and Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 |
[19] |
Xiaohua Jing, Masahiro Yamamoto. Simultaneous uniqueness for multiple parameters identification in a fractional diffusion-wave equation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022019 |
[20] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]