\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Vibrations of a damped extensible beam between two stops

Abstract Related Papers Cited by
  • A PDE system modeling the dynamics of an extensible beam having one of its ends constrained between two stops is considered. The existence of a weak global-in-time solution is established by a penalization method. In addition, the asymptotic behavior of such a solution is analyzed and the exponential decay rate for the related energy is shown.
    Mathematics Subject Classification: Primary: 74H40, 74M15; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity, 42 (1996), 1-30.doi: 10.1007/BF00041221.

    [2]

    J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.

    [3]

    A. Berti and M. G. Naso, Unilateral dynamic contact of two viscoelastic beams, Quart. Appl. Math., 69 (2011), 477-507.

    [4]

    E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion, Math. Methods Appl. Sci., 31 (2008), 1029-1064.doi: 10.1002/mma.957.

    [5]

    G. Bonfanti, M. Fabrizio, J. E. Muñoz Rivera and M. G. Naso, On the energy decay for a thermoelastic contact problem involving heat transfer, J. Thermal Stresses, 33 (2010), 1049-1065.doi: 10.1080/01495739.2010.511903.

    [6]

    G. Bonfanti, J. E. Muñoz Rivera and M. G. Naso, Global existence and exponential stability for a contact problem between two thermoelastic beams, J. Math. Anal. Appl., 345 (2008), 186-202.doi: 10.1016/j.jmaa.2008.04.003.

    [7]

    G. Bonfanti and M. G. Naso, A dynamic contact problem between two thermoelastic beams, in "Applied and Industrial Mathematics in Italy III," Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, (2010), 123-133.doi: 10.1142/9789814280303_0011.

    [8]

    M. I. M. Copetti and D. A. French, Numerical approximation and error control for a thermoelastic contact problem, Appl. Numer. Math., 55 (2005), 439-457.doi: 10.1016/j.apnum.2004.12.002.

    [9]

    R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.

    [10]

    G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976.

    [11]

    C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems. Variational Methods and Existence Theorems," Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005.doi: 10.1201/9781420027365.

    [12]

    M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.

    [13]

    H. Gao and J. E. Muñoz Rivera, Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations, 186 (2002), 52-68.doi: 10.1016/S0022-0396(02)00016-5.

    [14]

    W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.

    [15]

    N. J. Hoff, The dynamics of the buckling of elastic columns, J. Appl. Mech., 18 (1951), 68-74.

    [16]

    N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.

    [17]

    J. U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity, Math. Methods Appl. Sci., 13 (1990), 55-79.doi: 10.1002/mma.1670130106.

    [18]

    K. L. Kuttler, A. Park, M. Shillor and W. Zhang, Unilateral dynamic contact of two beams, Math. Comput. Modelling, 34 (2001), 365-384.doi: 10.1016/S0895-7177(01)00068-1.

    [19]

    K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110.

    [20]

    J. A. C. Martins and J. T. Oden, A numerical analysis of a class of problems in elastodynamics with friction, Comput. Methods Appl. Mech. Engrg., 40 (1983), 327-360.doi: 10.1016/0045-7825(83)90105-6.

    [21]

    J. E. Muñoz Rivera and D. Andrade, Existence and exponential decay for contact problems in thermoelasticity, Appl. Anal., 72 (1999), 253-273.doi: 10.1080/00036819908840741.

    [22]

    J. E. Muñoz Rivera and M. de Lacerda Oliveira, Exponential stability for a contact problem in thermoelasticity, IMA J. Appl. Math., 58 (1997), 71-82.doi: 10.1093/imamat/58.1.71.

    [23]

    J. E. Muñoz Rivera and S. Jiang, The thermoelastic and viscoelastic contact of two rods, J. Math. Anal. Appl., 217 (1998), 423-458.doi: 10.1006/jmaa.1997.5717.

    [24]

    J. E. Muñoz Rivera and H. Portillo Oquendo, Existence and decay to contact problems for thermoviscoelastic plates, J. Math. Anal. Appl., 233 (1999), 56-76.doi: 10.1006/jmaa.1998.6236.

    [25]

    J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential decay for a contact problem with local damping, Funkcial. Ekvac., 42 (1999), 371-387.

    [26]

    J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 63 (2001), 87-111.doi: 10.1023/A:1014091825772.

    [27]

    J. E. Muñoz Rivera and J. B. Sobrinho, Existence and uniform rates of decay for contact problems in viscoelasticity, Appl. Anal., 67 (1997), 175-199.doi: 10.1080/00036819708840604.

    [28]

    M. Nakao and J. E. Muñoz Rivera, The contact problem in thermoviscoelastic materials, J. Math. Anal. Appl., 264 (2001), 522-545.doi: 10.1006/jmaa.2001.7686.

    [29]

    F. G. Pfeiffer, Applications of unilateral multibody dynamics. Non-smooth mechanics, R. Soc. Lond. Phil. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 2609-2628.doi: 10.1098/rsta.2001.0912.

    [30]

    A. Rodríguez-Arós, J. M. Viaño and M. Sofonea, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math., 108 (2007), 327-358.doi: 10.1007/s00211-007-0117-7.

    [31]

    M. Shillor, M. Sofonea and J. J. Telega, Quasistatic viscoelastic contact with friction and wear diffusion, Quart. Appl. Math., 62 (2004), 379-399.

    [32]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360.

    [33]

    M. Sofonea, W. Han and M. Shillor, "Analysis and Approximation of Contact Problems with Adhesion or Damage," Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006.

    [34]

    M. E. Stavroulaki and G. E. Stavroulakis, Unilateral contact applications using FEM software. Mathematical modelling and numerical analysis in solid mechanics, Int. J. Appl. Math. Comput. Sci., 12 (2002), 115-125.

    [35]

    S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return