March  2013, 2(1): 35-54. doi: 10.3934/eect.2013.2.35

Vibrations of a damped extensible beam between two stops

1. 

Facoltà di Ingegneria, Università e-Campus Italia, Via Isimbardi 10, Novedrate (CO), 22060, Italy

2. 

Dipartimento di Matematica, Università degli Studi di Brescia, Via Valotti 9, Brescia, 25133, Italy

Received  July 2012 Revised  July 2012 Published  January 2013

A PDE system modeling the dynamics of an extensible beam having one of its ends constrained between two stops is considered. The existence of a weak global-in-time solution is established by a penalization method. In addition, the asymptotic behavior of such a solution is analyzed and the exponential decay rate for the related energy is shown.
Citation: Alessia Berti, Maria Grazia Naso. Vibrations of a damped extensible beam between two stops. Evolution Equations and Control Theory, 2013, 2 (1) : 35-54. doi: 10.3934/eect.2013.2.35
References:
[1]

K. T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity, 42 (1996), 1-30. doi: 10.1007/BF00041221.

[2]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.

[3]

A. Berti and M. G. Naso, Unilateral dynamic contact of two viscoelastic beams, Quart. Appl. Math., 69 (2011), 477-507.

[4]

E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion, Math. Methods Appl. Sci., 31 (2008), 1029-1064. doi: 10.1002/mma.957.

[5]

G. Bonfanti, M. Fabrizio, J. E. Muñoz Rivera and M. G. Naso, On the energy decay for a thermoelastic contact problem involving heat transfer, J. Thermal Stresses, 33 (2010), 1049-1065. doi: 10.1080/01495739.2010.511903.

[6]

G. Bonfanti, J. E. Muñoz Rivera and M. G. Naso, Global existence and exponential stability for a contact problem between two thermoelastic beams, J. Math. Anal. Appl., 345 (2008), 186-202. doi: 10.1016/j.jmaa.2008.04.003.

[7]

G. Bonfanti and M. G. Naso, A dynamic contact problem between two thermoelastic beams, in "Applied and Industrial Mathematics in Italy III," Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, (2010), 123-133. doi: 10.1142/9789814280303_0011.

[8]

M. I. M. Copetti and D. A. French, Numerical approximation and error control for a thermoelastic contact problem, Appl. Numer. Math., 55 (2005), 439-457. doi: 10.1016/j.apnum.2004.12.002.

[9]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.

[10]

G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976.

[11]

C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems. Variational Methods and Existence Theorems," Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.

[12]

M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.

[13]

H. Gao and J. E. Muñoz Rivera, Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations, 186 (2002), 52-68. doi: 10.1016/S0022-0396(02)00016-5.

[14]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.

[15]

N. J. Hoff, The dynamics of the buckling of elastic columns, J. Appl. Mech., 18 (1951), 68-74.

[16]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.

[17]

J. U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity, Math. Methods Appl. Sci., 13 (1990), 55-79. doi: 10.1002/mma.1670130106.

[18]

K. L. Kuttler, A. Park, M. Shillor and W. Zhang, Unilateral dynamic contact of two beams, Math. Comput. Modelling, 34 (2001), 365-384. doi: 10.1016/S0895-7177(01)00068-1.

[19]

K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110.

[20]

J. A. C. Martins and J. T. Oden, A numerical analysis of a class of problems in elastodynamics with friction, Comput. Methods Appl. Mech. Engrg., 40 (1983), 327-360. doi: 10.1016/0045-7825(83)90105-6.

[21]

J. E. Muñoz Rivera and D. Andrade, Existence and exponential decay for contact problems in thermoelasticity, Appl. Anal., 72 (1999), 253-273. doi: 10.1080/00036819908840741.

[22]

J. E. Muñoz Rivera and M. de Lacerda Oliveira, Exponential stability for a contact problem in thermoelasticity, IMA J. Appl. Math., 58 (1997), 71-82. doi: 10.1093/imamat/58.1.71.

[23]

J. E. Muñoz Rivera and S. Jiang, The thermoelastic and viscoelastic contact of two rods, J. Math. Anal. Appl., 217 (1998), 423-458. doi: 10.1006/jmaa.1997.5717.

[24]

J. E. Muñoz Rivera and H. Portillo Oquendo, Existence and decay to contact problems for thermoviscoelastic plates, J. Math. Anal. Appl., 233 (1999), 56-76. doi: 10.1006/jmaa.1998.6236.

[25]

J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential decay for a contact problem with local damping, Funkcial. Ekvac., 42 (1999), 371-387.

[26]

J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 63 (2001), 87-111. doi: 10.1023/A:1014091825772.

[27]

J. E. Muñoz Rivera and J. B. Sobrinho, Existence and uniform rates of decay for contact problems in viscoelasticity, Appl. Anal., 67 (1997), 175-199. doi: 10.1080/00036819708840604.

[28]

M. Nakao and J. E. Muñoz Rivera, The contact problem in thermoviscoelastic materials, J. Math. Anal. Appl., 264 (2001), 522-545. doi: 10.1006/jmaa.2001.7686.

[29]

F. G. Pfeiffer, Applications of unilateral multibody dynamics. Non-smooth mechanics, R. Soc. Lond. Phil. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 2609-2628. doi: 10.1098/rsta.2001.0912.

[30]

A. Rodríguez-Arós, J. M. Viaño and M. Sofonea, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math., 108 (2007), 327-358. doi: 10.1007/s00211-007-0117-7.

[31]

M. Shillor, M. Sofonea and J. J. Telega, Quasistatic viscoelastic contact with friction and wear diffusion, Quart. Appl. Math., 62 (2004), 379-399.

[32]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360.

[33]

M. Sofonea, W. Han and M. Shillor, "Analysis and Approximation of Contact Problems with Adhesion or Damage," Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[34]

M. E. Stavroulaki and G. E. Stavroulakis, Unilateral contact applications using FEM software. Mathematical modelling and numerical analysis in solid mechanics, Int. J. Appl. Math. Comput. Sci., 12 (2002), 115-125.

[35]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.

show all references

References:
[1]

K. T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity, 42 (1996), 1-30. doi: 10.1007/BF00041221.

[2]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.

[3]

A. Berti and M. G. Naso, Unilateral dynamic contact of two viscoelastic beams, Quart. Appl. Math., 69 (2011), 477-507.

[4]

E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion, Math. Methods Appl. Sci., 31 (2008), 1029-1064. doi: 10.1002/mma.957.

[5]

G. Bonfanti, M. Fabrizio, J. E. Muñoz Rivera and M. G. Naso, On the energy decay for a thermoelastic contact problem involving heat transfer, J. Thermal Stresses, 33 (2010), 1049-1065. doi: 10.1080/01495739.2010.511903.

[6]

G. Bonfanti, J. E. Muñoz Rivera and M. G. Naso, Global existence and exponential stability for a contact problem between two thermoelastic beams, J. Math. Anal. Appl., 345 (2008), 186-202. doi: 10.1016/j.jmaa.2008.04.003.

[7]

G. Bonfanti and M. G. Naso, A dynamic contact problem between two thermoelastic beams, in "Applied and Industrial Mathematics in Italy III," Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, (2010), 123-133. doi: 10.1142/9789814280303_0011.

[8]

M. I. M. Copetti and D. A. French, Numerical approximation and error control for a thermoelastic contact problem, Appl. Numer. Math., 55 (2005), 439-457. doi: 10.1016/j.apnum.2004.12.002.

[9]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.

[10]

G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976.

[11]

C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems. Variational Methods and Existence Theorems," Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.

[12]

M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.

[13]

H. Gao and J. E. Muñoz Rivera, Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations, 186 (2002), 52-68. doi: 10.1016/S0022-0396(02)00016-5.

[14]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.

[15]

N. J. Hoff, The dynamics of the buckling of elastic columns, J. Appl. Mech., 18 (1951), 68-74.

[16]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.

[17]

J. U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity, Math. Methods Appl. Sci., 13 (1990), 55-79. doi: 10.1002/mma.1670130106.

[18]

K. L. Kuttler, A. Park, M. Shillor and W. Zhang, Unilateral dynamic contact of two beams, Math. Comput. Modelling, 34 (2001), 365-384. doi: 10.1016/S0895-7177(01)00068-1.

[19]

K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110.

[20]

J. A. C. Martins and J. T. Oden, A numerical analysis of a class of problems in elastodynamics with friction, Comput. Methods Appl. Mech. Engrg., 40 (1983), 327-360. doi: 10.1016/0045-7825(83)90105-6.

[21]

J. E. Muñoz Rivera and D. Andrade, Existence and exponential decay for contact problems in thermoelasticity, Appl. Anal., 72 (1999), 253-273. doi: 10.1080/00036819908840741.

[22]

J. E. Muñoz Rivera and M. de Lacerda Oliveira, Exponential stability for a contact problem in thermoelasticity, IMA J. Appl. Math., 58 (1997), 71-82. doi: 10.1093/imamat/58.1.71.

[23]

J. E. Muñoz Rivera and S. Jiang, The thermoelastic and viscoelastic contact of two rods, J. Math. Anal. Appl., 217 (1998), 423-458. doi: 10.1006/jmaa.1997.5717.

[24]

J. E. Muñoz Rivera and H. Portillo Oquendo, Existence and decay to contact problems for thermoviscoelastic plates, J. Math. Anal. Appl., 233 (1999), 56-76. doi: 10.1006/jmaa.1998.6236.

[25]

J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential decay for a contact problem with local damping, Funkcial. Ekvac., 42 (1999), 371-387.

[26]

J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 63 (2001), 87-111. doi: 10.1023/A:1014091825772.

[27]

J. E. Muñoz Rivera and J. B. Sobrinho, Existence and uniform rates of decay for contact problems in viscoelasticity, Appl. Anal., 67 (1997), 175-199. doi: 10.1080/00036819708840604.

[28]

M. Nakao and J. E. Muñoz Rivera, The contact problem in thermoviscoelastic materials, J. Math. Anal. Appl., 264 (2001), 522-545. doi: 10.1006/jmaa.2001.7686.

[29]

F. G. Pfeiffer, Applications of unilateral multibody dynamics. Non-smooth mechanics, R. Soc. Lond. Phil. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 2609-2628. doi: 10.1098/rsta.2001.0912.

[30]

A. Rodríguez-Arós, J. M. Viaño and M. Sofonea, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math., 108 (2007), 327-358. doi: 10.1007/s00211-007-0117-7.

[31]

M. Shillor, M. Sofonea and J. J. Telega, Quasistatic viscoelastic contact with friction and wear diffusion, Quart. Appl. Math., 62 (2004), 379-399.

[32]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360.

[33]

M. Sofonea, W. Han and M. Shillor, "Analysis and Approximation of Contact Problems with Adhesion or Damage," Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[34]

M. E. Stavroulaki and G. E. Stavroulakis, Unilateral contact applications using FEM software. Mathematical modelling and numerical analysis in solid mechanics, Int. J. Appl. Math. Comput. Sci., 12 (2002), 115-125.

[35]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.

[1]

Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations and Control Theory, 2020, 9 (4) : 1009-1026. doi: 10.3934/eect.2020049

[2]

Mircea Sofonea, Meir Shillor. A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient. Communications on Pure and Applied Analysis, 2014, 13 (1) : 371-387. doi: 10.3934/cpaa.2014.13.371

[3]

Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237

[4]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[5]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[6]

Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039

[7]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[8]

Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735

[9]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[10]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[11]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[12]

Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2021064

[13]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[14]

Takayuki Niimura. Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2561-2591. doi: 10.3934/dcds.2020141

[15]

Yue Sun, Zhijian Yang. Strong attractors and their robustness for an extensible beam model with energy damping. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3101-3129. doi: 10.3934/dcdsb.2021175

[16]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[17]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[18]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[19]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[20]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]