Citation: |
[1] |
J. A. D. Appleby, M. Fabrizio, B. Lazzari and D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Meth. Appl. Sci., 16 (2006), 1677-1694.doi: 10.1142/S0218202506001674. |
[2] |
S. A. Avdonin, B. P. Belinskiy and L. Pandolfi, Controllability of a nonhomogeneous string and ring under time dependent tension, Math. Model. Nat. Phenom., 5 (2010), 4-31.doi: 10.1051/mmnp/20105401. |
[3] |
S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems," Cambridge University Press, New York, 1995. |
[4] |
S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory, Quart. Appl. Math., 71 (2013), 339-368.doi: 10.1090/S0033-569X-2012-01287-7. |
[5] |
S. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory, in "Time Delay Systems - Methods, Applications and New Trend" (Eds. R. Sipahi, T. Vyhlidal, P. Pepe and S.-I. Niculescu), Lecture Notes in Control and Inform. Sci., 423 Springer-Verlag, (2012), 87-101.doi: 10.1007/978-3-642-25221-1_7. |
[6] |
V. Barbu and M. Iannelli, Controllability of the heat equation with memory, Diff. Integral Eq., 13 (2000), 1393-1412. |
[7] |
X. Fu, J. Yong and X. Zhang, Controllability and observability of the heat equation with hyperbolic memory kernel, J. Diff. Equations, 247 (2009), 2395-2439. |
[8] |
I. C. Gohberg and M. G. Krein, Introduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace hilbertien, (French) [Linear Non Selfadjoint Operators in a Hilbert Space], Dunod, Paris, (1971). |
[9] |
G. M. Gubreev and M. G. Volkova, One remark about the unconditional exponential bases and cosine bases, connected with them, Methods Funct. Anal. Topology, 14 (2008), 330-333. |
[10] |
S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288C-300.doi: 10.1051/cocv/2012013. |
[11] |
A. Halanay and L. Pandolfi, Lack of controllability of the heat equation with memory, Systems & Control Lett., 61 (2012), 999-1002.doi: 10.1016/j.sysconle.2012.07.002. |
[12] |
S. Ivanov and L. Pandolfi, Heat equation with memory: Lack of controllability to the rest, J. Math. Anal. Appl., 355 (2009), 1-11.doi: 10.1016/j.jmaa.2009.01.008. |
[13] |
J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101-110.doi: 10.1137/0331008. |
[14] |
G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221-243.doi: 10.1080/00036818408839521. |
[15] |
G. Leugering, A decomposition method for integro-partial differential equations and applications, J. Math. Pures Appl. (9), 71 (1992), 561-587. |
[16] |
P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820-844.doi: 10.1137/110827740. |
[17] |
L. Pandolfi, The controllability of the Gurtin-Pipkin equation: A cosine operator approach, Appl. Math. Optim., 52 (2005), 143-165. (See a Correction in Appl. Math. Optim., 64 (2011), 467-468).doi: 10.1007/s00245-005-0819-0. |
[18] |
L. Pandolfi, Controllability of the Gurtin-Pipkin equation, SISSA, Proceedings of Science, PoS(CSTNA2005)015. |
[19] |
L. Pandolfi, Riesz systems and the controllability of heat equations with memory, Int. Eq. Operator Theory, 64 (2009), 429-453.doi: 10.1007/s00020-009-1682-1. |
[20] |
L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension, Discrete Continuous Dynam. Systems - B, 14 (2010), 1487-1510.doi: 10.3934/dcdsb.2010.14.1487. |
[21] |
L. Pandolfi, Riesz systems and an identification problem for heat equations with memory, Discrete Continuous Dynam. Systems - S, 4 (2011), 745-759.doi: 10.3934/dcdss.2011.4.745. |
[22] |
L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Analysis Appl., (2013).doi: 10.1016/j.jmaa.2013.05.051. |
[23] |
D. L. Russel, On exponential bases for the sobolev spaces over an interval, J. Math. Analysis Appl., 87 (1982), 528-550.doi: 10.1016/0022-247X(82)90142-1. |
[24] |
R. M. Young, "An Introduction to Nonharmonic Fourier Series," Academic Press, New York, 2001. |