September  2013, 2(3): 495-516. doi: 10.3934/eect.2013.2.495

Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations

1. 

Lavryentyev Institute of Hydrodynamics, Siberian Division of Russian Academy of Sciences, Lavryentyev pr. 15, Novosibirsk 630090, Russian Federation

2. 

Institut Élie Cartan Nancy, UMR7502 Université Lorraine, CNRS, INRIA, Laboratoire de Mathématiques, 54506 Vandoeuvre-lès-Nancy Cedex, France

Received  March 2013 Revised  May 2013 Published  July 2013

The flow around a rigid obstacle is governed by the compressible Navier-Stokes equations. The nonhomogeneous Dirichlet problem is considered in a bounded domain in two spatial dimensions with a compact obstacle in its interior. The flight of the airflow is characterized by the work shape functional, to be minimized over a family of admissible obstacles. The lift of the airfoil is a given function of temporal variable and should be maintain closed to the flight scenario. The continuity of the work functional with respect to the shape of obstacle in two spatial dimensions is shown for a wide class of admissible obstacles compact with respect to the Kuratowski-Mosco convergence.
    The dependence of small perturbations of approximate solutions to the governing equations with respect to the boundary variations of obstacles is analyzed for the nonstationary state equation.
Citation: Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495
References:
[1]

E. Feireisl and E. Friedmann, Continuity of drag and domain stability in the low Mach number limits, J. Math. Fluid Mech., 14 (2012), 731-750. doi: 10.1007/s00021-012-0106-1.

[2]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains, Dissertationes Math., 462 (2009), 1-149. doi: 10.4064/dm462-0-1.

[3]

A. Kaźmierczak, P. I. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical method for drag minimization in compressible flows, in "15th International Conference on Methods and Models in Automation and Robotics," MMAR'10. 97-101. Avalaible from: http://ieeexplore.ieee.org/stamp/stamp.jsp\$\protect\unhbox\voidb@x\hbox{?}\$tp=\$ \$arnumber=5587258

[4]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models," Clarendon Press, Oxford, 1998.

[5]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control: Applications to Fluid Structure Interactions," Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: 10.1201/9781420003246.

[6]

P. I. Plotnikov and J. Sokolowski, "Compressible Navier-Stokes Equations. Theory and Shape Optimization," Birkhäuser, Basel, 2012.

[7]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations, well-posedness and sensitivity analysis, SIAM J. Math. Anal., 40 (2008), 1152-1200. doi: 10.1137/070694272.

[8]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations, J. Math. Pures Appl., 92 (2009), 113-162. doi: 10.1016/j.matpur.2009.02.001.

[9]

P. I. Plotnikov and J. Sokołowski, On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations, J. Math. Fluid Mech., 7 (2005), 529-573. doi: 10.1007/s00021-004-0134-6.

[10]

P. I. Plotnikov and J. Sokołowski, Concentrations of solutions to time-discretized compressible Navier -Stokes equations, Comm. Math. Phys., 258 (2005), 567-608. doi: 10.1007/s00220-005-1358-x.

[11]

P. I. Plotnikov and J. Sokołowski, Domain dependence of solutions to compressible Navier-Stokes equations, SIAM J. Control Optim., 45 (2006), 1165-1197. doi: 10.1137/050635304.

[12]

P. I. Plotnikov and J. Sokołowski, Stationary boundary value problems for compressible Navier-Stokes equations, in "Handbook of Differential Equations: Stationary Partial Differential Equations," VI, Elsevier/North-Holland, Amsterdam, (2008), 313-410. doi: 10.1016/S1874-5733(08)80022-8.

[13]

P. I. Plotnikov and J. Sokołowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706. doi: 10.1137/090758179.

[14]

P. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains, in "Proc. 14th International IEEE/IFAC Conference on Methods and Models in Automation and Robotics MMAR'09" (2009), 37-40. Avalaible from: http://www.ifac-papersonline.net/Detailed/41051.html.

[15]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Ser. Comput. Math., 16, Springer, Berlin, 1992.

[16]

V. Šverák, On optimal shape design, J. Math. Pures Appl., 72 (1993), 537-551.

show all references

References:
[1]

E. Feireisl and E. Friedmann, Continuity of drag and domain stability in the low Mach number limits, J. Math. Fluid Mech., 14 (2012), 731-750. doi: 10.1007/s00021-012-0106-1.

[2]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains, Dissertationes Math., 462 (2009), 1-149. doi: 10.4064/dm462-0-1.

[3]

A. Kaźmierczak, P. I. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical method for drag minimization in compressible flows, in "15th International Conference on Methods and Models in Automation and Robotics," MMAR'10. 97-101. Avalaible from: http://ieeexplore.ieee.org/stamp/stamp.jsp\$\protect\unhbox\voidb@x\hbox{?}\$tp=\$ \$arnumber=5587258

[4]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models," Clarendon Press, Oxford, 1998.

[5]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control: Applications to Fluid Structure Interactions," Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: 10.1201/9781420003246.

[6]

P. I. Plotnikov and J. Sokolowski, "Compressible Navier-Stokes Equations. Theory and Shape Optimization," Birkhäuser, Basel, 2012.

[7]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations, well-posedness and sensitivity analysis, SIAM J. Math. Anal., 40 (2008), 1152-1200. doi: 10.1137/070694272.

[8]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations, J. Math. Pures Appl., 92 (2009), 113-162. doi: 10.1016/j.matpur.2009.02.001.

[9]

P. I. Plotnikov and J. Sokołowski, On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations, J. Math. Fluid Mech., 7 (2005), 529-573. doi: 10.1007/s00021-004-0134-6.

[10]

P. I. Plotnikov and J. Sokołowski, Concentrations of solutions to time-discretized compressible Navier -Stokes equations, Comm. Math. Phys., 258 (2005), 567-608. doi: 10.1007/s00220-005-1358-x.

[11]

P. I. Plotnikov and J. Sokołowski, Domain dependence of solutions to compressible Navier-Stokes equations, SIAM J. Control Optim., 45 (2006), 1165-1197. doi: 10.1137/050635304.

[12]

P. I. Plotnikov and J. Sokołowski, Stationary boundary value problems for compressible Navier-Stokes equations, in "Handbook of Differential Equations: Stationary Partial Differential Equations," VI, Elsevier/North-Holland, Amsterdam, (2008), 313-410. doi: 10.1016/S1874-5733(08)80022-8.

[13]

P. I. Plotnikov and J. Sokołowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706. doi: 10.1137/090758179.

[14]

P. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains, in "Proc. 14th International IEEE/IFAC Conference on Methods and Models in Automation and Robotics MMAR'09" (2009), 37-40. Avalaible from: http://www.ifac-papersonline.net/Detailed/41051.html.

[15]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Ser. Comput. Math., 16, Springer, Berlin, 1992.

[16]

V. Šverák, On optimal shape design, J. Math. Pures Appl., 72 (1993), 537-551.

[1]

Anna Kaźmierczak, Jan Sokolowski, Antoni Zochowski. Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes. Mathematical Control and Related Fields, 2018, 8 (1) : 89-115. doi: 10.3934/mcrf.2018004

[2]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[3]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations and Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[4]

Tongtong Liang. The stability with the general decay rate of the solution for stochastic functional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 2965-2980. doi: 10.3934/dcdss.2022127

[5]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[6]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[7]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[8]

John Sebastian Simon, Hirofumi Notsu. A shape optimization problem constrained with the Stokes equations to address maximization of vortices. Evolution Equations and Control Theory, 2022, 11 (6) : 1873-1902. doi: 10.3934/eect.2022003

[9]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[10]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[11]

Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control and Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023

[12]

Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems and Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003

[13]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[14]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[15]

Boris Paneah. On the over determinedness of some functional equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 497-505. doi: 10.3934/dcds.2004.10.497

[16]

Lok Ming Lui, Tsz Wai Wong, Wei Zeng, Xianfeng Gu, Paul M. Thompson, Tony F. Chan, Shing Tung Yau. Detection of shape deformities using Yamabe flow and Beltrami coefficients. Inverse Problems and Imaging, 2010, 4 (2) : 311-333. doi: 10.3934/ipi.2010.4.311

[17]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[18]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006

[19]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[20]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]