March  2013, 2(1): 55-79. doi: 10.3934/eect.2013.2.55

Sensitivity analysis for a free boundary fluid-elasticity interaction

1. 

NC State University, Department of Mathematics, 3236 SAS Hall, Raleigh, NC 27695-8205

2. 

CNRS-INLN, 1361 Routes des Lucioles, Sophia Antipolis, F-06560 Valbonne

Received  June 2012 Revised  September 2012 Published  January 2013

In this paper a total linearization is derived for the free boundary nonlinear elasticity - incompressible fluid interaction. The equations and the free boundary are linearized together and the new linearization turns out to be different from the usual coupling of classical linear models. New extra terms are present on the common interface, some of them involving the boundary curvatures. These terms play an important role in the final linearized system and can not be neglected.
Citation: Lorena Bociu, Jean-Paul Zolésio. Sensitivity analysis for a free boundary fluid-elasticity interaction. Evolution Equations and Control Theory, 2013, 2 (1) : 55-79. doi: 10.3934/eect.2013.2.55
References:
[1]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. Part I: Explicit semigroup generator and its spectral properties, in "Fluids and Waves," Contemp. Math., 440, AMS, Providence, RI, (2007), 15-54. doi: 10.1090/conm/440/08475.

[2]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in "Fluids and Waves," Contem. Math., 440, AMS, Providence, RI, (2007), 55-82. doi: 10.1090/conm/440/08476.

[3]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008), 1173-1207. doi: 10.1512/iumj.2008.57.3284.

[4]

L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping, Nonlinear Analysis A: Theory, Methods and Applications, 71 (2009), e560-e575. doi: 10.1016/j.na.2008.11.062.

[5]

L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Applicationes Mathematicae, 35 (2008), 281-304. doi: 10.4064/am35-3-3.

[6]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835.

[7]

L. Bociu and I. Lasiecka, Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, JDE, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009.

[8]

L. Bociu and P. Radu, Existence and uniqueness of weak solutions to the cauchy problem of a semilinear wave equation with supercritical interior source and damping,, Discrete Contin. Dyn. Syst., 2009 (): 60. 

[9]

L. Bociu and J.-P. Zolésio, Linearization of a coupled system of nonlinear elasticity and viscous fluid, in "Modern Aspects of the Theory of Partial Differential Equations," Operator Theory: Advances and Applications, 216, Birkhäuser/Springer Basel AG, Basel, (2011), 93-120. doi: 10.1007/978-3-0348-0069-3_6.

[10]

L. Bociu and J.-P. Zolésio, Existence for the linearization of a steady state fluid - nonlinear elasticity interaction, Discrete and Continuous Dynamical Systems, Supplement, (2011), 184-197.

[11]

S. Boisgérault and J. P. Zolésio, Boundary variations in the Navier-Stokes equations and Lagrangian functionals, in "Shape Optimization and Optimal Design" (Cambridge, 1999), Lecture Notes in Pure and Appl. Math., 216, Dekker, New York, (2001), 7-26.

[12]

M. Boulakia, Existence of weak solutions for the three dimensional motion of an elastic structure in an incompressible fluid, J. Math. Fluid Mech., 9 (2007), 262-294. doi: 10.1007/s00021-005-0201-7.

[13]

S. Čanić, A. Mikelić, T.-B. Kim and G. Guidoboni, Existence of a unique solution to a nonlinear moving-boundary problem of mixed type arising in modeling blood flow, in "Nonlinear Conservation Laws and Applications," IMA Vol. Math. Appl., 153, Springer, New York, (2011), 235-256. doi: 10.1007/978-1-4419-9554-4_11.

[14]

P. G. Ciarlet, "Mathematical Elasticity. Volume I: Three-dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988.

[15]

C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042. doi: 10.1080/03605300008821540.

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside and incompressible viscous fluid, Arch. Rational Mech. Anal., 176 (2005), 25-102. doi: 10.1007/s00205-004-0340-7.

[17]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Rational Mech. Anal. 179 (2006), 303-352. doi: 10.1007/s00205-005-0385-2.

[18]

M. C. Delfour and J.-P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus and Optimization," Advances in Design and Control, 4, SIAM, Philadelphia, PA, 2001.

[19]

M. C. Delfour and J.-P. Zolésio, Hidden boundary smoothness for some classes of differential equations on submanifolds, in " Optimization Methods in Partial Differential Equations" (South Hadley, MA, 1996), Contemporary Mathematics, 209, AMS, Providence, RI, (1997), 59-73. doi: 10.1090/conm/209/02759.

[20]

F. R. Desaint and J.-P. Zolésio, Manifold derivative in the Laplace-Beltrami equation, J. Funct. Anal., 151 (1997), 234-269. doi: 10.1006/jfan.1997.3130.

[21]

B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Math. Complut., 14 (2001), 523-538.

[22]

B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71. doi: 10.1007/s002050050136.

[23]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, DCDS, 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633.

[24]

R. Dziri and J.-P. Zolésio, Dynamical shape control in non-cylindrical Navier-Stokes equations, J. Convex Anal., 6 (1999), 293-318.

[25]

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equations, 3 (2003), 419-441. doi: 10.1007/s00028-003-0110-1.

[26]

L. Formaggia, A. Quarteroni and A. Veneziani, eds., "Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System," MS$&$A, Modeling, Simulation and Applications, 1, Springer-Verlag Italia, Milano, 2009. doi: 10.1007/978-88-470-1152-6.

[27]

C. Grandmont and Y. Maday, Existence for unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636. doi: 10.1051/m2an:2000159.

[28]

M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266. doi: 10.1007/PL00000954.

[29]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, DCDS-S, 2009 (): 424. 

[30]

T. Kim, S. Čanić and G. Guidoboni, Existence and uniqueness of a solution to a three-dimensional axially symmetric biot problem arising in modeling blood flow, Communications on Pure and Applied Analysis, 9 (2010), 839-865. doi: 10.3934/cpaa.2010.9.839.

[31]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Diff. Eq., 247 (2009), 1452-1478. doi: 10.1016/j.jde.2009.06.005.

[32]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity, 24 (2011), 159-176. doi: 10.1088/0951-7715/24/1/008.

[33]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories," Volumes I and II, Cambridge, University Press, 2000.

[34]

I.Lasiecka and A. Tuffaha, Optimal feedback synthesis for bolza control problem arising in linearized fluid structure interaction, in " Optimal Control of Coupled Systems of Partial Differential Equations," International Series of Numerical Mathematics, 158, Birkhäuser Verlag, Basel, (2009), 171-190. doi: 10.1007/978-3-7643-8923-9_10.

[35]

J.-L. Lions, "Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires," Dunod, 1969.

[36]

P. I. Plotnikov and J. Sokolowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706. doi: 10.1137/090758179.

[37]

J. A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), 113-147. doi: 10.1007/s002050100172.

[38]

J. Sokolowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.

[39]

B. N. Steele, D. Valdez-Jasso, M. A. Haider and M. S. Olufsen, Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall, SIAM J. Appl. Math., 71 (2011), 1123-1143. doi: 10.1137/100810186.

[40]

D. Tataru, On the regularity of boundary traces for the wave equation, Annali di Scuola Normale Sup. Pisa Cl. Sci. (4), 26 (1998), 185-206.

[41]

J.-P. Zolésio, Weak shape formulation of free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), 11-44.

show all references

References:
[1]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. Part I: Explicit semigroup generator and its spectral properties, in "Fluids and Waves," Contemp. Math., 440, AMS, Providence, RI, (2007), 15-54. doi: 10.1090/conm/440/08475.

[2]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in "Fluids and Waves," Contem. Math., 440, AMS, Providence, RI, (2007), 55-82. doi: 10.1090/conm/440/08476.

[3]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008), 1173-1207. doi: 10.1512/iumj.2008.57.3284.

[4]

L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping, Nonlinear Analysis A: Theory, Methods and Applications, 71 (2009), e560-e575. doi: 10.1016/j.na.2008.11.062.

[5]

L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Applicationes Mathematicae, 35 (2008), 281-304. doi: 10.4064/am35-3-3.

[6]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835.

[7]

L. Bociu and I. Lasiecka, Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, JDE, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009.

[8]

L. Bociu and P. Radu, Existence and uniqueness of weak solutions to the cauchy problem of a semilinear wave equation with supercritical interior source and damping,, Discrete Contin. Dyn. Syst., 2009 (): 60. 

[9]

L. Bociu and J.-P. Zolésio, Linearization of a coupled system of nonlinear elasticity and viscous fluid, in "Modern Aspects of the Theory of Partial Differential Equations," Operator Theory: Advances and Applications, 216, Birkhäuser/Springer Basel AG, Basel, (2011), 93-120. doi: 10.1007/978-3-0348-0069-3_6.

[10]

L. Bociu and J.-P. Zolésio, Existence for the linearization of a steady state fluid - nonlinear elasticity interaction, Discrete and Continuous Dynamical Systems, Supplement, (2011), 184-197.

[11]

S. Boisgérault and J. P. Zolésio, Boundary variations in the Navier-Stokes equations and Lagrangian functionals, in "Shape Optimization and Optimal Design" (Cambridge, 1999), Lecture Notes in Pure and Appl. Math., 216, Dekker, New York, (2001), 7-26.

[12]

M. Boulakia, Existence of weak solutions for the three dimensional motion of an elastic structure in an incompressible fluid, J. Math. Fluid Mech., 9 (2007), 262-294. doi: 10.1007/s00021-005-0201-7.

[13]

S. Čanić, A. Mikelić, T.-B. Kim and G. Guidoboni, Existence of a unique solution to a nonlinear moving-boundary problem of mixed type arising in modeling blood flow, in "Nonlinear Conservation Laws and Applications," IMA Vol. Math. Appl., 153, Springer, New York, (2011), 235-256. doi: 10.1007/978-1-4419-9554-4_11.

[14]

P. G. Ciarlet, "Mathematical Elasticity. Volume I: Three-dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988.

[15]

C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042. doi: 10.1080/03605300008821540.

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside and incompressible viscous fluid, Arch. Rational Mech. Anal., 176 (2005), 25-102. doi: 10.1007/s00205-004-0340-7.

[17]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Rational Mech. Anal. 179 (2006), 303-352. doi: 10.1007/s00205-005-0385-2.

[18]

M. C. Delfour and J.-P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus and Optimization," Advances in Design and Control, 4, SIAM, Philadelphia, PA, 2001.

[19]

M. C. Delfour and J.-P. Zolésio, Hidden boundary smoothness for some classes of differential equations on submanifolds, in " Optimization Methods in Partial Differential Equations" (South Hadley, MA, 1996), Contemporary Mathematics, 209, AMS, Providence, RI, (1997), 59-73. doi: 10.1090/conm/209/02759.

[20]

F. R. Desaint and J.-P. Zolésio, Manifold derivative in the Laplace-Beltrami equation, J. Funct. Anal., 151 (1997), 234-269. doi: 10.1006/jfan.1997.3130.

[21]

B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Math. Complut., 14 (2001), 523-538.

[22]

B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71. doi: 10.1007/s002050050136.

[23]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, DCDS, 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633.

[24]

R. Dziri and J.-P. Zolésio, Dynamical shape control in non-cylindrical Navier-Stokes equations, J. Convex Anal., 6 (1999), 293-318.

[25]

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equations, 3 (2003), 419-441. doi: 10.1007/s00028-003-0110-1.

[26]

L. Formaggia, A. Quarteroni and A. Veneziani, eds., "Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System," MS$&$A, Modeling, Simulation and Applications, 1, Springer-Verlag Italia, Milano, 2009. doi: 10.1007/978-88-470-1152-6.

[27]

C. Grandmont and Y. Maday, Existence for unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636. doi: 10.1051/m2an:2000159.

[28]

M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266. doi: 10.1007/PL00000954.

[29]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, DCDS-S, 2009 (): 424. 

[30]

T. Kim, S. Čanić and G. Guidoboni, Existence and uniqueness of a solution to a three-dimensional axially symmetric biot problem arising in modeling blood flow, Communications on Pure and Applied Analysis, 9 (2010), 839-865. doi: 10.3934/cpaa.2010.9.839.

[31]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Diff. Eq., 247 (2009), 1452-1478. doi: 10.1016/j.jde.2009.06.005.

[32]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity, 24 (2011), 159-176. doi: 10.1088/0951-7715/24/1/008.

[33]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories," Volumes I and II, Cambridge, University Press, 2000.

[34]

I.Lasiecka and A. Tuffaha, Optimal feedback synthesis for bolza control problem arising in linearized fluid structure interaction, in " Optimal Control of Coupled Systems of Partial Differential Equations," International Series of Numerical Mathematics, 158, Birkhäuser Verlag, Basel, (2009), 171-190. doi: 10.1007/978-3-7643-8923-9_10.

[35]

J.-L. Lions, "Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires," Dunod, 1969.

[36]

P. I. Plotnikov and J. Sokolowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706. doi: 10.1137/090758179.

[37]

J. A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), 113-147. doi: 10.1007/s002050100172.

[38]

J. Sokolowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.

[39]

B. N. Steele, D. Valdez-Jasso, M. A. Haider and M. S. Olufsen, Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall, SIAM J. Appl. Math., 71 (2011), 1123-1143. doi: 10.1137/100810186.

[40]

D. Tataru, On the regularity of boundary traces for the wave equation, Annali di Scuola Normale Sup. Pisa Cl. Sci. (4), 26 (1998), 185-206.

[41]

J.-P. Zolésio, Weak shape formulation of free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), 11-44.

[1]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[2]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[3]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[4]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[5]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[6]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[7]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[8]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[9]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[10]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[11]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[12]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[13]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[14]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[15]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[16]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[17]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[18]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[19]

Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020

[20]

Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]