-
Previous Article
A remark on Littman's method of boundary controllability
- EECT Home
- This Issue
-
Next Article
Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability
On Landau-Lifshitz equations of no-exchange energy models in ferromagnetics
1. | Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States |
2. | Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI 48824, United States |
References:
[1] |
F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and Nonuniqueness, Nonlinear Analysis, TMA, 18 (1992), 1071-1084.
doi: 10.1016/0362-546X(92)90196-L. |
[2] |
J. M. Ball, A. Taheri and M. Winter, Local minimizers in micromagnetics and related problems, Calc. Var., 14 (2002), 1-27.
doi: 10.1007/s005260100085. |
[3] |
M. Bertsch, P. Podio-Guidugli and V. Valente, On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl., 179 (2001), 331-360.
doi: 10.1007/BF02505962. |
[4] | |
[5] |
A. Capella, C. Melcher and F. Otto, Effective dynamic in ferromagnetic thin films and the motion of Neel walls, Nonlinearity, 20 (2007), 2519-2537.
doi: 10.1088/0951-7715/20/11/004. |
[6] |
I. Cimrak and R. V. Keer, Higher order regularity results in 3D for the Landau-Lifshitz equation with an exchange field, Nonlinear Analysis, 68 (2008), 1316-1331.
doi: 10.1016/j.na.2006.12.023. |
[7] |
G. Carbou and P. Fabrie, Time average in micromagnetics, J. Diff. Equations, 147 (1998), 383-409.
doi: 10.1006/jdeq.1998.3444. |
[8] |
G. Carbou and P. Fabrie, Regular solutions for Landau-Lifshitz equation in a bounded domain, Diff. Int. Equations, 14 (2001), 213-229. |
[9] |
B. Dacorogna and I. Fonseca, A-B quasiconvexity and implicit partial differential equations, Calc. Var. Partial Differential Equations, 14 (2002), 115-149.
doi: 10.1007/s005260100092. |
[10] |
W. Deng and B. Yan, Quasi-stationary limit and a degenerate Landau-Lifshitz equation of ferromagnetism, Applied Mathematics Research Express, 2013(2) (2013), 277-296.
doi: 10.1093/amrx/abs019. |
[11] |
A. DeSimone, Energy minimizers for large ferromagnetic bodies, Arch. Rational Mech. Anal., 125 (1993), 99-143.
doi: 10.1007/BF00376811. |
[12] |
A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math., 55 (2002), 1408-1460.
doi: 10.1002/cpa.3028. |
[13] |
A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Recent analytical developments in micromagnetics, in The Science of Hysteresis, (eds G Bertotti and I Mayergoyz), Elsevier Academic Press, New York, 2 (2005), 269-381. |
[14] |
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions, Int. J. Engineering Science, 47 (2009), 821-839.
doi: 10.1016/j.ijengsci.2009.05.010. |
[15] |
B. Guo and M. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. Partial Differential Equations, 1 (1993), 311-334.
doi: 10.1007/BF01191298. |
[16] |
R. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Cont. Mech. Thermodyn., 2 (1990), 215-239.
doi: 10.1007/BF01129598. |
[17] |
F. Jochmann, Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism, SIAM J. Math. Anal., 34 (2002), 315-340.
doi: 10.1137/S0036141001392293. |
[18] |
F. Jochmann, Aysmptotic behavior of the electromagnetic field for a micromagnetism equation without exchange energy, SIAM J. Math. Anal., 37 (2005), 276-290.
doi: 10.1137/S0036141004443324. |
[19] |
J. L. Joly, G. Metivier and J. Rauch, Global solutions to Maxwell equations in a ferromagnetic medium, Ann. Henri Poincaré, 1 (2000), 307-340.
doi: 10.1007/PL00001007. |
[20] |
P. Joly, A. Komech and O. Vacus, On transitions to stationary states in a Maxwell-Landau-Lifshitz-Gilbert system, SIAM J. Math. Anal., 31 (1999), 346-374.
doi: 10.1137/S0036141097329949. |
[21] |
M. Kruzík and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism, SIAM Review, 48 (2006), 439-483.
doi: 10.1137/S0036144504446187. |
[22] |
L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability of ferromagnetic bodies, Phys. Z. Sowj., 8 (1935), 153-169. |
[23] |
L. Landau, E. Lifshitz and L. Pitaevskii, Electrodynamics of Continuous Media, Pergamon Press, New York, 1984. |
[24] |
C. Melcher, Thin-film limits for Landau-Lifshitz-Gilbert equations, SIAM J. Math. Anal., 42 (2010) , 519-537.
doi: 10.1137/090762646. |
[25] |
R. Moser, Boundary vortices for thin ferromagnetic films, Arch. Rational Mech. Anal., 174 (2004), 267-300.
doi: 10.1007/s00205-004-0329-2. |
[26] |
P. Pedregal and B. Yan, On two-dimensional ferromagnetism, Proc. R. Soc. Edinburgh, 139A (2009), 575-594.
doi: 10.1017/S0308210507000662. |
[27] |
P. Pedregal and B. Yan, A duality method for micromagnetics, SIAM J. Math. Anal., 41 (2010), 2431-2452.
doi: 10.1137/080738179. |
[28] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290 pp. |
[29] |
L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, (J. M. Ball ed.), NATO ASI Series, Vol. CIII, D. Reidel, (1983), 263-285. |
[30] |
A. Visintin, On Landau-Lifshitz equation for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.
doi: 10.1007/BF03167039. |
[31] |
B. Yan, Characterization of energy minimizers in micromagnetics, J. Math. Anal. Appl., 374 (2011), 230-243.
doi: 10.1016/j.jmaa.2010.08.045. |
[32] |
B. Yan, On the equilibrium set of magnetostatic energy by differential inclusion, Calc. Var. Partial Differential Equations, 47 (2013), 547-565.
doi: 10.1007/s00526-012-0527-y. |
[33] |
B. Yan, On stability and asymptotic behaviors for a degenerate Landau-Lifshitz equation, Preprint submitted. |
show all references
References:
[1] |
F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and Nonuniqueness, Nonlinear Analysis, TMA, 18 (1992), 1071-1084.
doi: 10.1016/0362-546X(92)90196-L. |
[2] |
J. M. Ball, A. Taheri and M. Winter, Local minimizers in micromagnetics and related problems, Calc. Var., 14 (2002), 1-27.
doi: 10.1007/s005260100085. |
[3] |
M. Bertsch, P. Podio-Guidugli and V. Valente, On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl., 179 (2001), 331-360.
doi: 10.1007/BF02505962. |
[4] | |
[5] |
A. Capella, C. Melcher and F. Otto, Effective dynamic in ferromagnetic thin films and the motion of Neel walls, Nonlinearity, 20 (2007), 2519-2537.
doi: 10.1088/0951-7715/20/11/004. |
[6] |
I. Cimrak and R. V. Keer, Higher order regularity results in 3D for the Landau-Lifshitz equation with an exchange field, Nonlinear Analysis, 68 (2008), 1316-1331.
doi: 10.1016/j.na.2006.12.023. |
[7] |
G. Carbou and P. Fabrie, Time average in micromagnetics, J. Diff. Equations, 147 (1998), 383-409.
doi: 10.1006/jdeq.1998.3444. |
[8] |
G. Carbou and P. Fabrie, Regular solutions for Landau-Lifshitz equation in a bounded domain, Diff. Int. Equations, 14 (2001), 213-229. |
[9] |
B. Dacorogna and I. Fonseca, A-B quasiconvexity and implicit partial differential equations, Calc. Var. Partial Differential Equations, 14 (2002), 115-149.
doi: 10.1007/s005260100092. |
[10] |
W. Deng and B. Yan, Quasi-stationary limit and a degenerate Landau-Lifshitz equation of ferromagnetism, Applied Mathematics Research Express, 2013(2) (2013), 277-296.
doi: 10.1093/amrx/abs019. |
[11] |
A. DeSimone, Energy minimizers for large ferromagnetic bodies, Arch. Rational Mech. Anal., 125 (1993), 99-143.
doi: 10.1007/BF00376811. |
[12] |
A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math., 55 (2002), 1408-1460.
doi: 10.1002/cpa.3028. |
[13] |
A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Recent analytical developments in micromagnetics, in The Science of Hysteresis, (eds G Bertotti and I Mayergoyz), Elsevier Academic Press, New York, 2 (2005), 269-381. |
[14] |
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions, Int. J. Engineering Science, 47 (2009), 821-839.
doi: 10.1016/j.ijengsci.2009.05.010. |
[15] |
B. Guo and M. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. Partial Differential Equations, 1 (1993), 311-334.
doi: 10.1007/BF01191298. |
[16] |
R. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Cont. Mech. Thermodyn., 2 (1990), 215-239.
doi: 10.1007/BF01129598. |
[17] |
F. Jochmann, Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism, SIAM J. Math. Anal., 34 (2002), 315-340.
doi: 10.1137/S0036141001392293. |
[18] |
F. Jochmann, Aysmptotic behavior of the electromagnetic field for a micromagnetism equation without exchange energy, SIAM J. Math. Anal., 37 (2005), 276-290.
doi: 10.1137/S0036141004443324. |
[19] |
J. L. Joly, G. Metivier and J. Rauch, Global solutions to Maxwell equations in a ferromagnetic medium, Ann. Henri Poincaré, 1 (2000), 307-340.
doi: 10.1007/PL00001007. |
[20] |
P. Joly, A. Komech and O. Vacus, On transitions to stationary states in a Maxwell-Landau-Lifshitz-Gilbert system, SIAM J. Math. Anal., 31 (1999), 346-374.
doi: 10.1137/S0036141097329949. |
[21] |
M. Kruzík and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism, SIAM Review, 48 (2006), 439-483.
doi: 10.1137/S0036144504446187. |
[22] |
L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability of ferromagnetic bodies, Phys. Z. Sowj., 8 (1935), 153-169. |
[23] |
L. Landau, E. Lifshitz and L. Pitaevskii, Electrodynamics of Continuous Media, Pergamon Press, New York, 1984. |
[24] |
C. Melcher, Thin-film limits for Landau-Lifshitz-Gilbert equations, SIAM J. Math. Anal., 42 (2010) , 519-537.
doi: 10.1137/090762646. |
[25] |
R. Moser, Boundary vortices for thin ferromagnetic films, Arch. Rational Mech. Anal., 174 (2004), 267-300.
doi: 10.1007/s00205-004-0329-2. |
[26] |
P. Pedregal and B. Yan, On two-dimensional ferromagnetism, Proc. R. Soc. Edinburgh, 139A (2009), 575-594.
doi: 10.1017/S0308210507000662. |
[27] |
P. Pedregal and B. Yan, A duality method for micromagnetics, SIAM J. Math. Anal., 41 (2010), 2431-2452.
doi: 10.1137/080738179. |
[28] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290 pp. |
[29] |
L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, (J. M. Ball ed.), NATO ASI Series, Vol. CIII, D. Reidel, (1983), 263-285. |
[30] |
A. Visintin, On Landau-Lifshitz equation for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.
doi: 10.1007/BF03167039. |
[31] |
B. Yan, Characterization of energy minimizers in micromagnetics, J. Math. Anal. Appl., 374 (2011), 230-243.
doi: 10.1016/j.jmaa.2010.08.045. |
[32] |
B. Yan, On the equilibrium set of magnetostatic energy by differential inclusion, Calc. Var. Partial Differential Equations, 47 (2013), 547-565.
doi: 10.1007/s00526-012-0527-y. |
[33] |
B. Yan, On stability and asymptotic behaviors for a degenerate Landau-Lifshitz equation, Preprint submitted. |
[1] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure and Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[2] |
Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199 |
[3] |
Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644 |
[4] |
Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025 |
[5] |
Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071 |
[6] |
Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867 |
[7] |
Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133 |
[8] |
Changyou Wang, Shenzhou Zheng. Energy identity for a class of approximate biharmonic maps into sphere in dimension four. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 861-878. doi: 10.3934/dcds.2013.33.861 |
[9] |
Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003 |
[10] |
Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463 |
[11] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056 |
[12] |
Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361 |
[13] |
Boling Guo, Fangfang Li. Global smooth solution for the Sipn-Polarized transport equation with Landau-Lifshitz-Bloch equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2825-2840. doi: 10.3934/dcdsb.2020034 |
[14] |
Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333 |
[15] |
Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems and Imaging, 2022, 16 (1) : 89-117. doi: 10.3934/ipi.2021042 |
[16] |
Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179 |
[17] |
Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129 |
[18] |
Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473 |
[19] |
Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113 |
[20] |
Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022010 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]