Citation: |
[1] |
P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electronic J. of Diff. Eqns., 22 (2000), 1-15. |
[2] |
M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the themoelasticity system, Inverse Problems, 27 (2011), 18pp.doi: 10.1088/0266-5611/27/1/015006. |
[3] |
M. Eller and V. Isakov, Carleman estimates with two large parameters and applications, Contemp. Math., AMS, 268 (2000), 117-137.doi: 10.1090/conm/268/04310. |
[4] |
M. Eller, I. Lasiecka and R. Triggiani, Simultaneous Exact/Approximate Boundary Controllability of Thermo-Elastic Plates with Variable Thermal Coefficient and Moment Control, J. of Mathematical Analysis and Applications, 251 (2000), 452-478.doi: 10.1006/jmaa.2000.7015. |
[5] |
L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-New York, 1976. |
[6] |
V. Isakov, A Nonhyperbolic Cauchy Problem for $\square_b$, $square_c$ and its Applications to elasticity Theory, Comm. Pure Appl. Math., 39 (1986), 747-767.doi: 10.1002/cpa.3160390603. |
[7] |
V. Isakov, On the uniqueness of the continuation for a thermoelasticity system, SIAM J. Math. Anal., 33 (2001), 509-522.doi: 10.1137/S0036141000366509. |
[8] |
V. Isakov, Inverse Problems for Partial Differential Equations, Second edition. Applied Mathematical Sciences, 127. Springer, New York, 2006. |
[9] |
V. Isakov, Carleman estimates for some anisotropic elasticity systems and applications, Evolution Equations and Control Theory, 1 (2012), 141-154.doi: 10.3934/eect.2012.1.141. |
[10] |
V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress, Contemp. Math. AMS, 333 (2003), 99-113.doi: 10.1090/conm/333/05957. |
[11] |
V. Isakov and N. Kim, Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress, Applicationes Mathematicae, 35 (2008), 447-465.doi: 10.4064/am35-4-4. |
[12] |
V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators, Some application of Sobolev spaces to PDEs, International Math. Ser., Springer-Verlag, 10 (2009), 135-159.doi: 10.1007/978-0-387-85652-0_3. |
[13] |
V. Isakov and N. Kim, Weak Carleman estimates with large parameters for second order operators and applications to elasticity with residual stress, Discrete Cont. Dyn. Systems-A, 27 (2010), 799-825.doi: 10.3934/dcds.2010.27.799. |
[14] |
I. Lasiecka and R. Triggiani, Analyticity of thermo-Elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa CI. Sci., 27 (1998), 457-482. |
[15] |
C.-S. Man, Hartig's law and linear elasticity with initial stress, Inverse Problems, 14 (1998), 313-319.doi: 10.1088/0266-5611/14/2/007. |
[16] |
B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect, Inverse Problems, 28 (2012), 17pp.doi: 10.1088/0266-5611/28/9/095012. |