Citation: |
[1] |
A. A. Allen, Stability Results for Damped Multilayer Composite Beams and Plates, Ph.D. thesis, Iowa State University, 2009. |
[2] |
A. A. Allen and S. W. Hansen, Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam, Discrete Contin. Dyn. Syst. Ser. B (4), 14 (2010), 1279-1292.doi: 10.3934/dcdsb.2010.14.1279. |
[3] |
A. A. Allen and S. W. Hansen, Analyticity of a multilayer Mead-Markus plate, Nonlinear Analysis (12), 71 (2009), e1835-e1842.doi: 10.1016/j.na.2009.02.063. |
[4] |
G. Chen, A note on the boundary stabilization of the wave equation, SIAM J. Control Optim., 19 (1981), 106-113.doi: 10.1137/0319008. |
[5] |
R. H. Fabiano and S. W. Hansen, Modeling and analysis of a three-layer damped sandwich beam, Discrete Contin. Dyn. Syst., (2001), Added Volume, 143-155. |
[6] |
B. Z. Guo, Basis property of a Rayleigh beam with boundary stabilization, J. Optim. Theory Appl., 112 (2002), 529-547.doi: 10.1023/A:1017912031840. |
[7] |
S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103-1132.doi: 10.1142/S0218202504003568. |
[8] |
S. W. Hansen and I. Lasiecka, Analyticity, hyperbolicity and uniform stability of semigroups arising in models of composite beams, Math. Models Meth. Appl. Sci., 10 (2000), 555-580.doi: 10.1142/S0218202500000306. |
[9] |
S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189-230.doi: 10.3934/mcrf.2011.1.189. |
[10] |
S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 17 (2011), 1101-1132.doi: 10.1051/cocv/2010040. |
[11] |
S. W. Hansen and R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, Proc. 44th IEEE Conference on Decision and Control and the European Control Conference, (2005), 3146-3151.doi: 10.1109/CDC.2005.1582645. |
[12] |
S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Discrete Contin. Dyn. Syst., (2005), suppl., 365-375. |
[13] |
S. W. Hansen and R. D. Spies, Structural damping in laminated beams due to interfacial slip, Journal of Sound and Vibration, 204 (1997), 183-202.doi: 10.1006/jsvi.1996.0913. |
[14] |
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54. |
[15] |
J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182.doi: 10.1016/0022-0396(83)90073-6. |
[16] |
I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchhoff plates with boundary controls only in $ \Delta w |_\Sigma$, J. Differential Equations, 93 (1991), 62-101.doi: 10.1016/0022-0396(91)90022-2. |
[17] |
I. Lasiecka and R. Triggiani, Uniform exponential decay of wave equations in a bounded region with $L_2(0,\infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390.doi: 10.1016/0022-0396(87)90025-8. |
[18] |
D. J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr., 10 (1969), 163-175.doi: 10.1016/0022-460X(69)90193-X. |
[19] |
A. Ö. Özer and S. W. Hansen, Exact controllability of a Rayleigh beam with a single boundary control, Math. Control Signals Systems, 23 (2011), 199-222.doi: 10.1007/s00498-011-0069-4. |
[20] |
A. Ö. Özer and S. W. Hansen, Exact boundary controllability results for a multilayer Rao-Nakra sandwich beam, to appear in SIAM J. Cont. Optim. |
[21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[22] |
R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Systems Control Lett., 56 (2007), 558-567.doi: 10.1016/j.sysconle.2007.03.007. |
[23] |
B. Rao, A compact perturbation method for the boundary stabilization of the Ragleigh beam equation, Appl. Math. Optim., 33 (1996), 253-264.doi: 10.1007/BF01204704. |
[24] |
Y. V. K. S Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974), 309-326. |
[25] |
R. Triggiani, On the stabilizability problem in Banach space, J. Math. Anal. Appl., 52 (1975), 383-403.doi: 10.1016/0022-247X(75)90067-0. |
[26] |
R. Triggiani, Lack of uniform stabilization for noncontractive semigroups under compact perturbation, Proc. Amer. Math. Soc., 105 (1989), 375-383.doi: 10.1090/S0002-9939-1989-0953013-0. |
[27] |
J. M. Wang and B. Z. Guo, Analyticity and dynamic behavior of a damped three-layer sandwich beam, J. Optim. Theory Appl., 137 (2008), 675-689.doi: 10.1007/s10957-007-9341-7. |
[28] |
J. M. Wang, G. Q. Xu and S. P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Cont. Optim., 44 (2005), 1575-1597.doi: 10.1137/040610003. |
[29] |
J. M. Wang, B. Z. Guo and B. Chentouf, Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach, ESAIM Control Optim. Calc. Var., 12 (2006), 12-34.doi: 10.1051/cocv:2005030. |
[30] |
M. J. Yan and E. H. Dowell, Governing equations for vibratory constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972), 1041-1046. |
[31] |
R. Young, An Introduction to Nonharmonic Fourier Series, Revised first edition. Academic Press, Inc., San Diego, CA, 2001. |