December  2013, 2(4): 723-731. doi: 10.3934/eect.2013.2.723

Optimal control of a diffusion/reaction/switching system

1. 

Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250

Received  November 2012 Revised  June 2013 Published  November 2013

We consider an optimal control problem involving the use of bacteria for pollution removal where the model assumes the bacteria switch instantaneously between active and dormant states, determined by threshold sensitivity to the local concentration $v$ of a diffusing critical nutrient; compare [7], [3], [6] in which nutrient transport is convective. It is shown that the direct problem has a solution for each boundary control $ψ = ∂v/∂n$ and that optimal controls exist, minimizing a combination of residual pollutant and aggregated cost of the nutrient.
Citation: Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723
References:
[1]

T. C. Hazen, Cometabolic Bioremediation (Ch. 7, pp. 2505-2514) and In Situ Groundwater Bioremediation (Ch. 13, pp. 2583-2596) in Handbook of Hydrocarbon Lipid Microbiology, (Timmins et al., eds) Springer, NY, 2010. Google Scholar

[2]

M. A. Krasnosel'skĭi and A. V. Pokrovskiĭ, Systems with Hysteresis, Translated from the Russian by Marek Niezgódka. Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61302-9.  Google Scholar

[3]

S. Lenhart, T. I. Seidman and J. Yong, Optimal control of a bioreactor with modal switching, Math. Models Methods in Appl. Sci., 11 (2001), 933-949. doi: 10.1142/S0218202501001185.  Google Scholar

[4]

R. D. Norris, et al., Handbook of Bioremediation, Lewis Publishers, Boca Raton, 1994. Google Scholar

[5]

T. I. Seidman, Switching systems: Thermostats and periodicity, Math. Res. Report 83-07, UMBC, 1983. http://userpages.umbc.edu/ seidman/ss_83.pdf Google Scholar

[6]

T. I. Seidman, A 1-dimensional bioremediation model with modal switching, in Control of Distributed Parameter and Stochastic Systems, (S. Chen, X. Li, J. Yong, X.Y. Zhou, eds.) pp. 127-131, Kluwer Acad. Publ., Norwell, 1999. Google Scholar

[7]

T. I. Seidman, A convection/reaction/switching system, Nonlinear Anal. - TMA, 67 (2007), 2060-2071. doi: 10.1016/j.na.2006.08.050.  Google Scholar

[8]

T. I. Seidman, Some aspects of modeling with discontinuities, Int'l. J. Evolution Eqns., 3 (2009), 419-433.  Google Scholar

[9]

G. Stampacchia, Equations Elliptiques Du Second Ordre á Coefficients Discontinues, (French) Séminaire de Mathématiques Supérieures, No. 16 (été, 1965); Les Presses de l'Université de Montréal, Montreal, Que. 1966 326 pp.  Google Scholar

[10]

E. Venkataramani and R. Ahlert, Role of cometabolism in biological oxidation of synthetic compounds, Biotechnology and Bioengineering, 27 (1985) 1306-1311. doi: 10.1002/bit.260270906.  Google Scholar

[11]

A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences, 111. Springer-Verlag, Berlin, 1994.  Google Scholar

show all references

References:
[1]

T. C. Hazen, Cometabolic Bioremediation (Ch. 7, pp. 2505-2514) and In Situ Groundwater Bioremediation (Ch. 13, pp. 2583-2596) in Handbook of Hydrocarbon Lipid Microbiology, (Timmins et al., eds) Springer, NY, 2010. Google Scholar

[2]

M. A. Krasnosel'skĭi and A. V. Pokrovskiĭ, Systems with Hysteresis, Translated from the Russian by Marek Niezgódka. Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61302-9.  Google Scholar

[3]

S. Lenhart, T. I. Seidman and J. Yong, Optimal control of a bioreactor with modal switching, Math. Models Methods in Appl. Sci., 11 (2001), 933-949. doi: 10.1142/S0218202501001185.  Google Scholar

[4]

R. D. Norris, et al., Handbook of Bioremediation, Lewis Publishers, Boca Raton, 1994. Google Scholar

[5]

T. I. Seidman, Switching systems: Thermostats and periodicity, Math. Res. Report 83-07, UMBC, 1983. http://userpages.umbc.edu/ seidman/ss_83.pdf Google Scholar

[6]

T. I. Seidman, A 1-dimensional bioremediation model with modal switching, in Control of Distributed Parameter and Stochastic Systems, (S. Chen, X. Li, J. Yong, X.Y. Zhou, eds.) pp. 127-131, Kluwer Acad. Publ., Norwell, 1999. Google Scholar

[7]

T. I. Seidman, A convection/reaction/switching system, Nonlinear Anal. - TMA, 67 (2007), 2060-2071. doi: 10.1016/j.na.2006.08.050.  Google Scholar

[8]

T. I. Seidman, Some aspects of modeling with discontinuities, Int'l. J. Evolution Eqns., 3 (2009), 419-433.  Google Scholar

[9]

G. Stampacchia, Equations Elliptiques Du Second Ordre á Coefficients Discontinues, (French) Séminaire de Mathématiques Supérieures, No. 16 (été, 1965); Les Presses de l'Université de Montréal, Montreal, Que. 1966 326 pp.  Google Scholar

[10]

E. Venkataramani and R. Ahlert, Role of cometabolism in biological oxidation of synthetic compounds, Biotechnology and Bioengineering, 27 (1985) 1306-1311. doi: 10.1002/bit.260270906.  Google Scholar

[11]

A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences, 111. Springer-Verlag, Berlin, 1994.  Google Scholar

[1]

M. Alipour, M. A. Vali, A. H. Borzabadi. A hybrid parametrization approach for a class of nonlinear optimal control problems. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 493-506. doi: 10.3934/naco.2019037

[2]

Kobamelo Mashaba, Jianxing Li, Honglei Xu, Xinhua Jiang. Optimal control of hybrid manufacturing systems by log-exponential smoothing aggregation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1711-1719. doi: 10.3934/dcdss.2020100

[3]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[4]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[5]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[6]

Sébastien Court, Karl Kunisch, Laurent Pfeiffer. Hybrid optimal control problems for a class of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1031-1060. doi: 10.3934/dcdss.2018060

[7]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[8]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[9]

David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321

[10]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[11]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[12]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[13]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[16]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[17]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[18]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control & Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002

[19]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[20]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]