Citation: |
[1] |
M. Ben-Artzi and S. Klainerman, Decay and Regularity for the Schrödinger equation, J. Anal. Math., 58 (1992), 25-37.doi: 10.1007/BF02790356. |
[2] |
N. Burq, Smoothing Effect for Schrödinger boundary value problems, Duke Mathematical Journal, 123 (2004), 403-427.doi: 10.1215/S0012-7094-04-12326-7. |
[3] |
P. Constantin and J.-C. Saut, Local smoothing properties of Schrödinger equations, Indiana Univ. Math. J., 38 (1989), 791-810.doi: 10.1512/iumj.1989.38.38037. |
[4] |
S.-I. Doi, Remarks on the Cauchy problem for Schrödinger-type equations, Comm. Partial Differential Equations, 21 (1996), 163-178.doi: 10.1080/03605309608821178. |
[5] |
S.-I. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., 82 (1996), 679-706.doi: 10.1215/S0012-7094-96-08228-9. |
[6] |
S.-I. Doi, Smoothing effects for Schrödinger equation and global behaviour of geodesic flow, Math. Ann., 318 (2000), 355-389.doi: 10.1007/s002080000128. |
[7] |
M. A. Horn and W. Littman, Boundary control of a Schrödinger Equation with nonconstant principal part, Control of Partial Differential Equations and Applications, Lecture Notes in Pure and Applied Mathematics, 174 (1996), Dekker, New York, 101-106. |
[8] |
I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of the Schrödinger equation with Dirichlet control, Differential and Integral Equations, 5 (1992), 521-535. |
[9] |
I. Lasiecka, R. Triggiani and X. Zhang, Global Uniqueness, Observability and Stabilization of Nonconservative Schrödinger Equations via Pointwise Carleman Estimates. Part I: $H^1(\Omega)$-estimates, J. Inverse and Ill-Posed Problems, 12 1-81. Part II: J. Inverse and Ill-Posed Problems, 12 (2004), 182-231.doi: 10.1163/156939404773972761. |
[10] |
W. Littman, Boundary Control Theory for Beams and Plates, Proceedings, 24th Conference on Decision and Control (December, 1985), Ft Lauderdale, FL.doi: 10.1109/CDC.1985.268511. |
[11] |
W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity, Archive for Rational Mechanics and Analysis, 103 (1988), 193-236.doi: 10.1007/BF00251758. |
[12] |
W. Littman and S. W. Taylor, Smoothing evolution equations and boundary control theory, J. d'Analyse Math., 59 (1992), 117-131.doi: 10.1007/BF02790221. |
[13] |
W. Littman and S. W. Taylor, Local Smoothing and Energy Decay for a Semi-Infinite Beam Pinned at Several Points and Applications to Boundary Control, Differential Equations, Dynamical Systems and Control Science, Lecture Notes in Pure and Applied Mathematics, 152 (1994), Dekker, NY, 683-704. |
[14] |
W. Littman and S. W. Taylor, The Heat and Schrödinger Equations: Boundary Control with One Shot, Control methods in PDE-dynamical systems, Contemp. Math., 426 (2007), Amer. Math. Soc., Providence, RI, 293-305.doi: 10.1090/conm/426/08194. |
[15] |
W. Littman and S. W. Taylor, The balayage method: Boundary control of a thermo-elastic plate, Applicationes Mathematicae, 35 (2008), 467-479.doi: 10.4064/am35-4-5. |
[16] |
E. Machtyngier, Controlabilité exact et stabilisation frontiere de l'equation de Schrödinger, (French) [Exact boundary controllability and stabilizability for the Schr?dinger equation], C. R. Acad. Sc. Paris, 310 (1990), 801-806. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[18] |
D. Tataru, A priori estimates of Carleman's type in domains with boundary, J. Math. Pures Appl., 73 (1994), 355-387. |
[19] |
D. Tataru, Boundary controllability for conservative PDEs, Appl. Math. Optim., 31 (1995), 257-295.doi: 10.1007/BF01215993. |
[20] |
D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl., (9) 75 (1996), 367-408. |
[21] |
D. Tataru, Carleman estimates, unique continuation and controllability for anizotropic PDEs, Optimization methods in partial differential equations (South Hadley, MA, 1996, S. Cox and I. Lasiecka, Editors), 267-279, Contemp. Math., 209 (1997), Amer. Math. Soc., Providence, RI.doi: 10.1090/conm/209/02771. |
[22] |
S. W. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces, Journal of Mathematical Analysis and Applications, 194 (1995), 14-38.doi: 10.1006/jmaa.1995.1284. |
[23] |
S. W. Taylor, Exact Boundary Controllability of a Beam and Mass System, Computation and Control IV, Progress in Systems and Control Theory, Bowers and Lund, editors, Birkhauser, Boston, 1995. |
[24] |
S. W. Taylor, A smoothing property of a hyperbolic system and boundary controllability, Journal of Computational and Applied Mathematics, 114 (2000), 23-40.doi: 10.1016/S0377-0427(99)00286-1. |
[25] |
S. W. Taylor and S. Yau, Boundary Control of a Rotating Timoshenko Beam, ANZIAM Journal, 44 (2003), E143-E184. |
[26] |
R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled non-conservative Schrödinger equations, Dedicated to the memory of Pierre Grisvard. Rend. Istit. Mat. Univ. Trieste, 28 (1996), suppl. (1997), 453-504. |
[27] |
R. Triggiani and X. Xu, Pointwise Carleman Estimates, Global Uniqueness, Observability, and Stabilization for Schrödinger Equations on Riemannian Manifolds at the $H^1(\Omega)$-Level, Control methods in PDE-dynamical systems, 339-404, Contemp. Math., 426 (2007), Amer. Math. Soc., Providence, RI.doi: 10.1090/conm/426/08197. |
[28] |
R. Triggiani and P. -F. Yao, Inverse/observability estimates for Schrödinger equations with variable coefficients, Recent advances in control of PDEs. Control Cybernet, 28 (1999), 627-664. |