-
Previous Article
On controllability of a linear elastic beam with memory under longitudinal load
- EECT Home
- This Issue
- Next Article
Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems
1. | Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany, Germany |
References:
[1] |
Trans. Amer. Soc. Math., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[2] |
Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986. |
[3] |
SIAM J. Control Optim., 25 (1987), 526-546.
doi: 10.1137/0325029. |
[4] |
in Operator Methods for Optimal Control Problems (ed. S. J. Lee), Lecture Notes in Pure and Appl. Math., 108, Dekker, New York, 1987, 67-96. |
[5] |
Indiana Univ. Math. J., 44 (1995), 545-573.
doi: 10.1512/iumj.1995.44.2001. |
[6] |
Operator Theory: Advances and Applications, 209, Birkhäuser Verlag, Basel, 2010. |
[7] |
J. Evol. Equ., 13 (2013), 311-334.
doi: 10.1007/s00028-013-0179-1. |
[8] |
Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.
doi: 10.1007/b97696. |
[9] |
Trans. Amer. Math. Soc., 236 (1978), 385-394.
doi: 10.1090/S0002-9947-1978-0461206-1. |
[10] |
SIAM J. Control Optim., 43 (2004), 341-356.
doi: 10.1137/S0363012901380961. |
[11] |
Systems Control Lett., 54 (2005), 557-574.
doi: 10.1016/j.sysconle.2004.10.006. |
[12] |
Operator Theory: Advances and Applications, 223, Linear Operators and Linear Systems, Birkhäuser/Springer Basel AG, Basel, 2012.
doi: 10.1007/978-3-0348-0399-1. |
[13] |
SIAM J. Control Optim., 44 (2005), 1864-1892.
doi: 10.1137/040611677. |
[14] |
Ann. Math. Pura Appl., 152 (1988), 281-330.
doi: 10.1007/BF01766154. |
[15] |
J. Comp. Appl. Math., 114 (2000), 1-10.
doi: 10.1016/S0377-0427(99)00284-8. |
[16] |
Studia Math., 88 (1988), 37-42. |
[17] |
Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.2307/1999112. |
[18] |
IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., CPDE, 2014. Available from: http://hal.archives-ouvertes.fr/hal-00872199.
doi: 10.1109/TAC.2014.2315754. |
[19] |
Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[20] |
J. Geom. Phys., 42 (2002), 166-194.
doi: 10.1016/S0393-0440(01)00083-3. |
[21] |
Operator Theory: Advances and Applications, 88, Birkhäuser Verlag, Basel, 1996.
doi: 10.1007/978-3-0348-9206-3. |
[22] |
PhD thesis, Universiteit Twente in Enschede, 2007. Available from: http://doc.utwente.nl/57842/1/thesis_Villegas.pdf. Google Scholar |
[23] |
IEEE Trans. Automat. Control, 54 (2009), 142-147.
doi: 10.1109/TAC.2008.2007176. |
[24] |
ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077-1093.
doi: 10.1051/cocv/2009036. |
show all references
References:
[1] |
Trans. Amer. Soc. Math., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[2] |
Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986. |
[3] |
SIAM J. Control Optim., 25 (1987), 526-546.
doi: 10.1137/0325029. |
[4] |
in Operator Methods for Optimal Control Problems (ed. S. J. Lee), Lecture Notes in Pure and Appl. Math., 108, Dekker, New York, 1987, 67-96. |
[5] |
Indiana Univ. Math. J., 44 (1995), 545-573.
doi: 10.1512/iumj.1995.44.2001. |
[6] |
Operator Theory: Advances and Applications, 209, Birkhäuser Verlag, Basel, 2010. |
[7] |
J. Evol. Equ., 13 (2013), 311-334.
doi: 10.1007/s00028-013-0179-1. |
[8] |
Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.
doi: 10.1007/b97696. |
[9] |
Trans. Amer. Math. Soc., 236 (1978), 385-394.
doi: 10.1090/S0002-9947-1978-0461206-1. |
[10] |
SIAM J. Control Optim., 43 (2004), 341-356.
doi: 10.1137/S0363012901380961. |
[11] |
Systems Control Lett., 54 (2005), 557-574.
doi: 10.1016/j.sysconle.2004.10.006. |
[12] |
Operator Theory: Advances and Applications, 223, Linear Operators and Linear Systems, Birkhäuser/Springer Basel AG, Basel, 2012.
doi: 10.1007/978-3-0348-0399-1. |
[13] |
SIAM J. Control Optim., 44 (2005), 1864-1892.
doi: 10.1137/040611677. |
[14] |
Ann. Math. Pura Appl., 152 (1988), 281-330.
doi: 10.1007/BF01766154. |
[15] |
J. Comp. Appl. Math., 114 (2000), 1-10.
doi: 10.1016/S0377-0427(99)00284-8. |
[16] |
Studia Math., 88 (1988), 37-42. |
[17] |
Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.2307/1999112. |
[18] |
IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., CPDE, 2014. Available from: http://hal.archives-ouvertes.fr/hal-00872199.
doi: 10.1109/TAC.2014.2315754. |
[19] |
Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[20] |
J. Geom. Phys., 42 (2002), 166-194.
doi: 10.1016/S0393-0440(01)00083-3. |
[21] |
Operator Theory: Advances and Applications, 88, Birkhäuser Verlag, Basel, 1996.
doi: 10.1007/978-3-0348-9206-3. |
[22] |
PhD thesis, Universiteit Twente in Enschede, 2007. Available from: http://doc.utwente.nl/57842/1/thesis_Villegas.pdf. Google Scholar |
[23] |
IEEE Trans. Automat. Control, 54 (2009), 142-147.
doi: 10.1109/TAC.2008.2007176. |
[24] |
ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077-1093.
doi: 10.1051/cocv/2009036. |
[1] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[2] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021021 |
[3] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021036 |
[4] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[5] |
Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030 |
[6] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[7] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[8] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021027 |
[9] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[10] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[11] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001 |
[12] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406 |
[13] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
[14] |
Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021126 |
[15] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[16] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[17] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[18] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[19] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[20] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]