June  2014, 3(2): 207-229. doi: 10.3934/eect.2014.3.207

Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems

1. 

Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany, Germany

Received  December 2013 Revised  April 2014 Published  May 2014

Stability and stabilization of linear port-Hamiltonian systems on infinite-dimensional spaces are investigated. This class is general enough to include models of beams and waves as well as transport and Schrödinger equations with boundary control and observation. The analysis is based on the frequency domain method which gives new results for second order port-Hamiltonian systems and hybrid systems. Stabilizing SIP or SOP controllers are designed. The obtained results are applied to the Euler-Bernoulli beam.
Citation: Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207
References:
[1]

Trans. Amer. Soc. Math., 306 (1988), 837-852. doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986.  Google Scholar

[3]

SIAM J. Control Optim., 25 (1987), 526-546. doi: 10.1137/0325029.  Google Scholar

[4]

in Operator Methods for Optimal Control Problems (ed. S. J. Lee), Lecture Notes in Pure and Appl. Math., 108, Dekker, New York, 1987, 67-96.  Google Scholar

[5]

Indiana Univ. Math. J., 44 (1995), 545-573. doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[6]

Operator Theory: Advances and Applications, 209, Birkhäuser Verlag, Basel, 2010.  Google Scholar

[7]

J. Evol. Equ., 13 (2013), 311-334. doi: 10.1007/s00028-013-0179-1.  Google Scholar

[8]

Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. doi: 10.1007/b97696.  Google Scholar

[9]

Trans. Amer. Math. Soc., 236 (1978), 385-394. doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[10]

SIAM J. Control Optim., 43 (2004), 341-356. doi: 10.1137/S0363012901380961.  Google Scholar

[11]

Systems Control Lett., 54 (2005), 557-574. doi: 10.1016/j.sysconle.2004.10.006.  Google Scholar

[12]

Operator Theory: Advances and Applications, 223, Linear Operators and Linear Systems, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[13]

SIAM J. Control Optim., 44 (2005), 1864-1892. doi: 10.1137/040611677.  Google Scholar

[14]

Ann. Math. Pura Appl., 152 (1988), 281-330. doi: 10.1007/BF01766154.  Google Scholar

[15]

J. Comp. Appl. Math., 114 (2000), 1-10. doi: 10.1016/S0377-0427(99)00284-8.  Google Scholar

[16]

Studia Math., 88 (1988), 37-42.  Google Scholar

[17]

Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.  Google Scholar

[18]

IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., CPDE, 2014. Available from: http://hal.archives-ouvertes.fr/hal-00872199. doi: 10.1109/TAC.2014.2315754.  Google Scholar

[19]

Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[20]

J. Geom. Phys., 42 (2002), 166-194. doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[21]

Operator Theory: Advances and Applications, 88, Birkhäuser Verlag, Basel, 1996. doi: 10.1007/978-3-0348-9206-3.  Google Scholar

[22]

PhD thesis, Universiteit Twente in Enschede, 2007. Available from: http://doc.utwente.nl/57842/1/thesis_Villegas.pdf. Google Scholar

[23]

IEEE Trans. Automat. Control, 54 (2009), 142-147. doi: 10.1109/TAC.2008.2007176.  Google Scholar

[24]

ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077-1093. doi: 10.1051/cocv/2009036.  Google Scholar

show all references

References:
[1]

Trans. Amer. Soc. Math., 306 (1988), 837-852. doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986.  Google Scholar

[3]

SIAM J. Control Optim., 25 (1987), 526-546. doi: 10.1137/0325029.  Google Scholar

[4]

in Operator Methods for Optimal Control Problems (ed. S. J. Lee), Lecture Notes in Pure and Appl. Math., 108, Dekker, New York, 1987, 67-96.  Google Scholar

[5]

Indiana Univ. Math. J., 44 (1995), 545-573. doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[6]

Operator Theory: Advances and Applications, 209, Birkhäuser Verlag, Basel, 2010.  Google Scholar

[7]

J. Evol. Equ., 13 (2013), 311-334. doi: 10.1007/s00028-013-0179-1.  Google Scholar

[8]

Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. doi: 10.1007/b97696.  Google Scholar

[9]

Trans. Amer. Math. Soc., 236 (1978), 385-394. doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[10]

SIAM J. Control Optim., 43 (2004), 341-356. doi: 10.1137/S0363012901380961.  Google Scholar

[11]

Systems Control Lett., 54 (2005), 557-574. doi: 10.1016/j.sysconle.2004.10.006.  Google Scholar

[12]

Operator Theory: Advances and Applications, 223, Linear Operators and Linear Systems, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[13]

SIAM J. Control Optim., 44 (2005), 1864-1892. doi: 10.1137/040611677.  Google Scholar

[14]

Ann. Math. Pura Appl., 152 (1988), 281-330. doi: 10.1007/BF01766154.  Google Scholar

[15]

J. Comp. Appl. Math., 114 (2000), 1-10. doi: 10.1016/S0377-0427(99)00284-8.  Google Scholar

[16]

Studia Math., 88 (1988), 37-42.  Google Scholar

[17]

Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.  Google Scholar

[18]

IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., CPDE, 2014. Available from: http://hal.archives-ouvertes.fr/hal-00872199. doi: 10.1109/TAC.2014.2315754.  Google Scholar

[19]

Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[20]

J. Geom. Phys., 42 (2002), 166-194. doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[21]

Operator Theory: Advances and Applications, 88, Birkhäuser Verlag, Basel, 1996. doi: 10.1007/978-3-0348-9206-3.  Google Scholar

[22]

PhD thesis, Universiteit Twente in Enschede, 2007. Available from: http://doc.utwente.nl/57842/1/thesis_Villegas.pdf. Google Scholar

[23]

IEEE Trans. Automat. Control, 54 (2009), 142-147. doi: 10.1109/TAC.2008.2007176.  Google Scholar

[24]

ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077-1093. doi: 10.1051/cocv/2009036.  Google Scholar

[1]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[2]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[3]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[4]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[5]

Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030

[6]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[7]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[8]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[9]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[10]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[11]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[12]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[13]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[14]

Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021126

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[16]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[17]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[18]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[19]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[20]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]