Advanced Search
Article Contents
Article Contents

On controllability of a linear elastic beam with memory under longitudinal load

Abstract Related Papers Cited by
  • This work is motivated by the control problem for a linear elastic beam under a longitudinal load when the material of the beam has memory. We reduce the problem of controllability to a nonstandard moment problem. The solution of the latter problem is based on the Riesz basis property for a family of functions quadratically close to the nonharmonic exponentials. This result requires the detailed analysis of an integro--differential equation, and is of interest in itself for Function Theory.
    Mathematics Subject Classification: Primary: 34H05, 93B05, 93C20; Secondary: 74Dxx, 35Q93, 46E35, 34B09, 35Pxx, 42A70.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Ammar-Khodja, A. Benabdallah, J. E. Munoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.doi: 10.1016/S0022-0396(03)00185-2.


    S. A. Avdonin and B. P. Belinskiy, Controllability of a string under tension, Discrete Contin. Dyn. Syst., (2003), 57-67.


    S. A. Avdonin and B. P. Belinskyi, On the basis properties of the functions arising in the boundary control problem of a string with a variable tension, Discrete Contin. Dyn. Syst., (2005), 40-49.


    S. A. Avdonin, B. P. Belinskiy and S. A. Ivanov, On controllability of an elastic ring, Appl. Math. Optim., 60 (2009), 71-103.doi: 10.1007/s00245-009-9064-2.


    S. A. Avdonin, B. P. Belinskiy and L. Pandolfi, Controllability of a non-homogeneous string and ring under time dependent tension, Math. Model. Nat. Phenom., 5 (2010), 4-31.doi: 10.1051/mmnp/20105401.


    S. A. Avdonin and B. P. Belinskiy, On controllability of a non-homogeneous elastic string with memory, J. of Math Analysis and Applications, 398 (2013), 254-269.doi: 10.1016/j.jmaa.2012.08.037.


    S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, 1995.


    S. A. Avdonin and S. A. Ivanov, Exponential Riesz bases of subspaces and divided differences, St. Petersburg Mathematical Journal, 13 (2002), 339-351.


    S. Avdonin and W. Moran, Ingham type inequalities and Riesz bases of divided differences, International J. of Applied Math. and Computer Science, 11 (2001), 803-820.


    S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory, Quarterly of Applied Mathematics, 71 (2013), 339-368.doi: 10.1090/S0033-569X-2012-01287-7.


    S. A. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory, in Time Delay Systems: Methods, Applications and New Trends, Lecture Notes in Control and Information Sciences, 423, Springer, Berlin, 2011, 87-101.doi: 10.1007/978-3-642-25221-1_7.


    N. K. Bari, Biorthogonal systems and bases in Hilbert space, (in Russian) Moskov. Gos. Univ. Učen. Zap., Matematika, 148 (1951), 69-107.


    S. Breuer, On energy stored in linear viscoelastic solids, ZAMM-J. Appl. Math. and Mechanics, 55 (1975), 403-405.doi: 10.1002/zamm.19750550708.


    C. M. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Anal., 37 (1970), 297-308.


    S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.doi: 10.1137/0315015.


    A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity, North-Holland Series in Applied Mathematics and Mechanics, 38, North-Holland Publishing Co., Amsterdam, 1994.


    M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory, Appl. Anal., 81 (2002), 1245-1264.doi: 10.1080/0003681021000035588.


    I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translation of Mathematical Monographs, 18, American Mathematical Society, Providence, RI, 1969.


    J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International Series of Numerical Mathematics, 91 (1989), 211-236.


    G. Leugering, On boundary feedback stabilisability of a viscoelastic beam, Proc. of the Royal Soc. of Edinburgh, 114 (1990), 57-69.doi: 10.1017/S0308210500024264.


    G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221-243.doi: 10.1080/00036818408839521.


    G. Leugering, Boundary controllability of a viscoelastic beam, Applicable Anal., 23 (1986), 119-137.doi: 10.1080/00036818608839635.


    J. L. Lions and E. Magenes, Problèmes aux Limites Nonhomogénes et Applications, 1 & 2, Dunod, Paris, 1968.


    W. J. Liuand and G. H. Williams, Partial exact controllability for the linear thermo-elastic model, Electronic J. Differential Equations, (1998), 11 pp.


    V. P. Madan, Response of a viscoelastic beam to an impulsive excitation, Mathematika, 16 (1969), 205-208.doi: 10.1112/S0025579300008172.


    J. E. Munoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.doi: 10.1016/S0022-247X(03)00511-0.


    L. Pandolfi, Riesz system and the controllability of heat equations with memory, Integral Equations Operator Theory, 64 (2009), 429-453.doi: 10.1007/s00020-009-1682-1.


    L. Pandolfi, Riesz systems and moment method in the study of viscoelasticity in one space dimension, Discrete Contin. Dyn. Syst., Ser. B, 14 (2010), 1487-1510.doi: 10.3934/dcdsb.2010.14.1487.


    D. L. Russell, Nonharmonic Fourier series in the control theory of distributed parameter systems, J. Math. Anal. Appl., 18 (1967), 542-560.doi: 10.1016/0022-247X(67)90045-5.


    D. L. Russell, Controllability and stabilizability theory for linear partial differential equations, SIAM Rev., 20 (1978), 639-739.doi: 10.1137/1020095.


    D. L. Russell, On exponential bases for the Sobolev spaces over an interval, J. Math. Anal. Appl., 87 (1982), 528-550.doi: 10.1016/0022-247X(82)90142-1.


    K. Seip, On the connection between exponential bases and certain related sequences in $L_2(\pi,\pi)$, J. Functional Anal., 130 (1995), 131-160.doi: 10.1006/jfan.1995.1066.


    W. C. Xie, Dynamic Stability of Structures, Cambridge University Press, New York, 2006.


    R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001.

  • 加载中

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint