-
Previous Article
Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$
- EECT Home
- This Issue
-
Next Article
Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems
On controllability of a linear elastic beam with memory under longitudinal load
1. | University of Alaska Fairbanks, Fairbanks, AK 99775-6660, United States |
2. | University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403-2598, United States |
References:
[1] |
F. Ammar-Khodja, A. Benabdallah, J. E. Munoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.
doi: 10.1016/S0022-0396(03)00185-2. |
[2] |
S. A. Avdonin and B. P. Belinskiy, Controllability of a string under tension, Discrete Contin. Dyn. Syst., (2003), 57-67. |
[3] |
S. A. Avdonin and B. P. Belinskyi, On the basis properties of the functions arising in the boundary control problem of a string with a variable tension, Discrete Contin. Dyn. Syst., (2005), 40-49. |
[4] |
S. A. Avdonin, B. P. Belinskiy and S. A. Ivanov, On controllability of an elastic ring, Appl. Math. Optim., 60 (2009), 71-103.
doi: 10.1007/s00245-009-9064-2. |
[5] |
S. A. Avdonin, B. P. Belinskiy and L. Pandolfi, Controllability of a non-homogeneous string and ring under time dependent tension, Math. Model. Nat. Phenom., 5 (2010), 4-31.
doi: 10.1051/mmnp/20105401. |
[6] |
S. A. Avdonin and B. P. Belinskiy, On controllability of a non-homogeneous elastic string with memory, J. of Math Analysis and Applications, 398 (2013), 254-269.
doi: 10.1016/j.jmaa.2012.08.037. |
[7] |
S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, 1995. |
[8] |
S. A. Avdonin and S. A. Ivanov, Exponential Riesz bases of subspaces and divided differences, St. Petersburg Mathematical Journal, 13 (2002), 339-351. |
[9] |
S. Avdonin and W. Moran, Ingham type inequalities and Riesz bases of divided differences, International J. of Applied Math. and Computer Science, 11 (2001), 803-820. |
[10] |
S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory, Quarterly of Applied Mathematics, 71 (2013), 339-368.
doi: 10.1090/S0033-569X-2012-01287-7. |
[11] |
S. A. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory, in Time Delay Systems: Methods, Applications and New Trends, Lecture Notes in Control and Information Sciences, 423, Springer, Berlin, 2011, 87-101.
doi: 10.1007/978-3-642-25221-1_7. |
[12] |
N. K. Bari, Biorthogonal systems and bases in Hilbert space, (in Russian) Moskov. Gos. Univ. Učen. Zap., Matematika, 148 (1951), 69-107. |
[13] |
S. Breuer, On energy stored in linear viscoelastic solids, ZAMM-J. Appl. Math. and Mechanics, 55 (1975), 403-405.
doi: 10.1002/zamm.19750550708. |
[14] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Anal., 37 (1970), 297-308. |
[15] |
S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.
doi: 10.1137/0315015. |
[16] |
A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity, North-Holland Series in Applied Mathematics and Mechanics, 38, North-Holland Publishing Co., Amsterdam, 1994. |
[17] |
M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory, Appl. Anal., 81 (2002), 1245-1264.
doi: 10.1080/0003681021000035588. |
[18] |
I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translation of Mathematical Monographs, 18, American Mathematical Society, Providence, RI, 1969. |
[19] |
J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International Series of Numerical Mathematics, 91 (1989), 211-236. |
[20] |
G. Leugering, On boundary feedback stabilisability of a viscoelastic beam, Proc. of the Royal Soc. of Edinburgh, 114 (1990), 57-69.
doi: 10.1017/S0308210500024264. |
[21] |
G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221-243.
doi: 10.1080/00036818408839521. |
[22] |
G. Leugering, Boundary controllability of a viscoelastic beam, Applicable Anal., 23 (1986), 119-137.
doi: 10.1080/00036818608839635. |
[23] |
J. L. Lions and E. Magenes, Problèmes aux Limites Nonhomogénes et Applications, 1 & 2, Dunod, Paris, 1968. |
[24] |
W. J. Liuand and G. H. Williams, Partial exact controllability for the linear thermo-elastic model, Electronic J. Differential Equations, (1998), 11 pp. |
[25] |
V. P. Madan, Response of a viscoelastic beam to an impulsive excitation, Mathematika, 16 (1969), 205-208.
doi: 10.1112/S0025579300008172. |
[26] |
J. E. Munoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.
doi: 10.1016/S0022-247X(03)00511-0. |
[27] |
L. Pandolfi, Riesz system and the controllability of heat equations with memory, Integral Equations Operator Theory, 64 (2009), 429-453.
doi: 10.1007/s00020-009-1682-1. |
[28] |
L. Pandolfi, Riesz systems and moment method in the study of viscoelasticity in one space dimension, Discrete Contin. Dyn. Syst., Ser. B, 14 (2010), 1487-1510.
doi: 10.3934/dcdsb.2010.14.1487. |
[29] |
D. L. Russell, Nonharmonic Fourier series in the control theory of distributed parameter systems, J. Math. Anal. Appl., 18 (1967), 542-560.
doi: 10.1016/0022-247X(67)90045-5. |
[30] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations, SIAM Rev., 20 (1978), 639-739.
doi: 10.1137/1020095. |
[31] |
D. L. Russell, On exponential bases for the Sobolev spaces over an interval, J. Math. Anal. Appl., 87 (1982), 528-550.
doi: 10.1016/0022-247X(82)90142-1. |
[32] |
K. Seip, On the connection between exponential bases and certain related sequences in $L_2(\pi,\pi)$, J. Functional Anal., 130 (1995), 131-160.
doi: 10.1006/jfan.1995.1066. |
[33] |
W. C. Xie, Dynamic Stability of Structures, Cambridge University Press, New York, 2006. |
[34] |
R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001. |
show all references
References:
[1] |
F. Ammar-Khodja, A. Benabdallah, J. E. Munoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.
doi: 10.1016/S0022-0396(03)00185-2. |
[2] |
S. A. Avdonin and B. P. Belinskiy, Controllability of a string under tension, Discrete Contin. Dyn. Syst., (2003), 57-67. |
[3] |
S. A. Avdonin and B. P. Belinskyi, On the basis properties of the functions arising in the boundary control problem of a string with a variable tension, Discrete Contin. Dyn. Syst., (2005), 40-49. |
[4] |
S. A. Avdonin, B. P. Belinskiy and S. A. Ivanov, On controllability of an elastic ring, Appl. Math. Optim., 60 (2009), 71-103.
doi: 10.1007/s00245-009-9064-2. |
[5] |
S. A. Avdonin, B. P. Belinskiy and L. Pandolfi, Controllability of a non-homogeneous string and ring under time dependent tension, Math. Model. Nat. Phenom., 5 (2010), 4-31.
doi: 10.1051/mmnp/20105401. |
[6] |
S. A. Avdonin and B. P. Belinskiy, On controllability of a non-homogeneous elastic string with memory, J. of Math Analysis and Applications, 398 (2013), 254-269.
doi: 10.1016/j.jmaa.2012.08.037. |
[7] |
S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, 1995. |
[8] |
S. A. Avdonin and S. A. Ivanov, Exponential Riesz bases of subspaces and divided differences, St. Petersburg Mathematical Journal, 13 (2002), 339-351. |
[9] |
S. Avdonin and W. Moran, Ingham type inequalities and Riesz bases of divided differences, International J. of Applied Math. and Computer Science, 11 (2001), 803-820. |
[10] |
S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory, Quarterly of Applied Mathematics, 71 (2013), 339-368.
doi: 10.1090/S0033-569X-2012-01287-7. |
[11] |
S. A. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory, in Time Delay Systems: Methods, Applications and New Trends, Lecture Notes in Control and Information Sciences, 423, Springer, Berlin, 2011, 87-101.
doi: 10.1007/978-3-642-25221-1_7. |
[12] |
N. K. Bari, Biorthogonal systems and bases in Hilbert space, (in Russian) Moskov. Gos. Univ. Učen. Zap., Matematika, 148 (1951), 69-107. |
[13] |
S. Breuer, On energy stored in linear viscoelastic solids, ZAMM-J. Appl. Math. and Mechanics, 55 (1975), 403-405.
doi: 10.1002/zamm.19750550708. |
[14] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Anal., 37 (1970), 297-308. |
[15] |
S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.
doi: 10.1137/0315015. |
[16] |
A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity, North-Holland Series in Applied Mathematics and Mechanics, 38, North-Holland Publishing Co., Amsterdam, 1994. |
[17] |
M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory, Appl. Anal., 81 (2002), 1245-1264.
doi: 10.1080/0003681021000035588. |
[18] |
I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translation of Mathematical Monographs, 18, American Mathematical Society, Providence, RI, 1969. |
[19] |
J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International Series of Numerical Mathematics, 91 (1989), 211-236. |
[20] |
G. Leugering, On boundary feedback stabilisability of a viscoelastic beam, Proc. of the Royal Soc. of Edinburgh, 114 (1990), 57-69.
doi: 10.1017/S0308210500024264. |
[21] |
G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221-243.
doi: 10.1080/00036818408839521. |
[22] |
G. Leugering, Boundary controllability of a viscoelastic beam, Applicable Anal., 23 (1986), 119-137.
doi: 10.1080/00036818608839635. |
[23] |
J. L. Lions and E. Magenes, Problèmes aux Limites Nonhomogénes et Applications, 1 & 2, Dunod, Paris, 1968. |
[24] |
W. J. Liuand and G. H. Williams, Partial exact controllability for the linear thermo-elastic model, Electronic J. Differential Equations, (1998), 11 pp. |
[25] |
V. P. Madan, Response of a viscoelastic beam to an impulsive excitation, Mathematika, 16 (1969), 205-208.
doi: 10.1112/S0025579300008172. |
[26] |
J. E. Munoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.
doi: 10.1016/S0022-247X(03)00511-0. |
[27] |
L. Pandolfi, Riesz system and the controllability of heat equations with memory, Integral Equations Operator Theory, 64 (2009), 429-453.
doi: 10.1007/s00020-009-1682-1. |
[28] |
L. Pandolfi, Riesz systems and moment method in the study of viscoelasticity in one space dimension, Discrete Contin. Dyn. Syst., Ser. B, 14 (2010), 1487-1510.
doi: 10.3934/dcdsb.2010.14.1487. |
[29] |
D. L. Russell, Nonharmonic Fourier series in the control theory of distributed parameter systems, J. Math. Anal. Appl., 18 (1967), 542-560.
doi: 10.1016/0022-247X(67)90045-5. |
[30] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations, SIAM Rev., 20 (1978), 639-739.
doi: 10.1137/1020095. |
[31] |
D. L. Russell, On exponential bases for the Sobolev spaces over an interval, J. Math. Anal. Appl., 87 (1982), 528-550.
doi: 10.1016/0022-247X(82)90142-1. |
[32] |
K. Seip, On the connection between exponential bases and certain related sequences in $L_2(\pi,\pi)$, J. Functional Anal., 130 (1995), 131-160.
doi: 10.1006/jfan.1995.1066. |
[33] |
W. C. Xie, Dynamic Stability of Structures, Cambridge University Press, New York, 2006. |
[34] |
R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001. |
[1] |
Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018 |
[2] |
Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : i-v. doi: 10.3934/dcdsb.20193i |
[3] |
Tao Chen, Linda Keen. Slices of parameter spaces of generalized Nevanlinna functions. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5659-5681. doi: 10.3934/dcds.2019248 |
[4] |
Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687 |
[5] |
Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114 |
[6] |
Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449 |
[7] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[8] |
Doyoon Kim, Kyeong-Hun Kim, Kijung Lee. Parabolic Systems with measurable coefficients in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2587-2613. doi: 10.3934/cpaa.2022062 |
[9] |
Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems and Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43 |
[10] |
Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics and Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187 |
[11] |
M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337 |
[12] |
Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control and Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002 |
[13] |
Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial and Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056 |
[14] |
David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations and Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305 |
[15] |
Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047 |
[16] |
M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208 |
[17] |
Sergei Avdonin, Julian Edward. Controllability for a string with attached masses and Riesz bases for asymmetric spaces. Mathematical Control and Related Fields, 2019, 9 (3) : 453-494. doi: 10.3934/mcrf.2019021 |
[18] |
Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1 |
[19] |
S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705 |
[20] |
Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations and Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]