June  2014, 3(2): 277-286. doi: 10.3934/eect.2014.3.277

An integration model for two different ethnic groups

1. 

Department of Mathematics, University of Bologna, Italy

2. 

LNCC, Petropolis, Brazil

Received  October 2013 Revised  February 2014 Published  May 2014

For the purpose of studying the integration of two different ethnic populations, we compare their evolution with that of a mixture of two fluids. For this model we consider the concentration of only one species, whose evolution will be described by a Cahn-Hilliard equation. Instead, the separation between the two phases will be controlled by the educational levels of two components. Finally, we assume that the homogenization phase occurs when the mean of the cultural levels is greater then a critical value.
Citation: Mauro Fabrizio, Jaime Munõz Rivera. An integration model for two different ethnic groups. Evolution Equations & Control Theory, 2014, 3 (2) : 277-286. doi: 10.3934/eect.2014.3.277
References:
[1]

Park: Addison-Wesley, 1978. Google Scholar

[2]

Math. Comp., 68 (1999), 487-517. doi: 10.1090/S0025-5718-99-01015-7.  Google Scholar

[3]

Math. Meth. Appl. Sci., 34 (2011), 1193-1201. doi: 10.1002/mma.1432.  Google Scholar

[4]

Mecânica Computacional, 24 (2010), 2061-2069. Google Scholar

[5]

Journal of Business & Economic Statistics, 23 (2005), 255-268. doi: 10.1198/073500104000000604.  Google Scholar

[6]

Physica D, 236 (2007), 13-21. doi: 10.1016/j.physd.2007.07.009.  Google Scholar

[7]

J. Chem. Phys, 28 (1958), 258-267. doi: 10.1063/1.1744102.  Google Scholar

[8]

European J. Appl. Math., 7 (1996), 287-301. doi: 10.1017/S0956792500002369.  Google Scholar

[9]

Princeton University Press, Princeton, 1981. Google Scholar

[10]

Migration Policy Institute, Washington, 2011. Google Scholar

[11]

Math. Meth. Appl. Sci., 31 (2008), 627-653. doi: 10.1002/mma.930.  Google Scholar

[12]

European Journal of Mechanics B/Fluids, 30 (2011), 281-287. doi: 10.1016/j.euromechflu.2010.12.003.  Google Scholar

[13]

Continuum Mech. Thermodyn, 23 (2011), 509-525. doi: 10.1007/s00161-011-0193-x.  Google Scholar

[14]

Little Brown and Company, London, 2000. Google Scholar

[15]

Physica D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[16]

Science of Science and Management of S.&.T., 25 (2004), 23-26. Google Scholar

[17]

Strategic Management Journal, 15 (1994), 73-90. doi: 10.1002/smj.4250151006.  Google Scholar

[18]

Journal of Computers, 5 (2010), 1046-1053. doi: 10.4304/jcp.5.7.1046-1053.  Google Scholar

[19]

Technovation, 24 (2004), 697-705. Google Scholar

[20]

California Management Review, 40 (1998), 40-54. doi: 10.2307/41165942.  Google Scholar

[21]

Science Research Management, 24 (2003), 67-71. Google Scholar

show all references

References:
[1]

Park: Addison-Wesley, 1978. Google Scholar

[2]

Math. Comp., 68 (1999), 487-517. doi: 10.1090/S0025-5718-99-01015-7.  Google Scholar

[3]

Math. Meth. Appl. Sci., 34 (2011), 1193-1201. doi: 10.1002/mma.1432.  Google Scholar

[4]

Mecânica Computacional, 24 (2010), 2061-2069. Google Scholar

[5]

Journal of Business & Economic Statistics, 23 (2005), 255-268. doi: 10.1198/073500104000000604.  Google Scholar

[6]

Physica D, 236 (2007), 13-21. doi: 10.1016/j.physd.2007.07.009.  Google Scholar

[7]

J. Chem. Phys, 28 (1958), 258-267. doi: 10.1063/1.1744102.  Google Scholar

[8]

European J. Appl. Math., 7 (1996), 287-301. doi: 10.1017/S0956792500002369.  Google Scholar

[9]

Princeton University Press, Princeton, 1981. Google Scholar

[10]

Migration Policy Institute, Washington, 2011. Google Scholar

[11]

Math. Meth. Appl. Sci., 31 (2008), 627-653. doi: 10.1002/mma.930.  Google Scholar

[12]

European Journal of Mechanics B/Fluids, 30 (2011), 281-287. doi: 10.1016/j.euromechflu.2010.12.003.  Google Scholar

[13]

Continuum Mech. Thermodyn, 23 (2011), 509-525. doi: 10.1007/s00161-011-0193-x.  Google Scholar

[14]

Little Brown and Company, London, 2000. Google Scholar

[15]

Physica D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[16]

Science of Science and Management of S.&.T., 25 (2004), 23-26. Google Scholar

[17]

Strategic Management Journal, 15 (1994), 73-90. doi: 10.1002/smj.4250151006.  Google Scholar

[18]

Journal of Computers, 5 (2010), 1046-1053. doi: 10.4304/jcp.5.7.1046-1053.  Google Scholar

[19]

Technovation, 24 (2004), 697-705. Google Scholar

[20]

California Management Review, 40 (1998), 40-54. doi: 10.2307/41165942.  Google Scholar

[21]

Science Research Management, 24 (2003), 67-71. Google Scholar

[1]

Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030

[2]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021034

[3]

Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032

[4]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[5]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[6]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[7]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[8]

Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021106

[9]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[10]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[11]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021072

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[14]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[15]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[16]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[17]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[18]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[19]

Hirokazu Saito, Xin Zhang. Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021051

[20]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]