-
Previous Article
Modeling and control of hybrid beam systems with rotating tip component
- EECT Home
- This Issue
-
Next Article
An integration model for two different ethnic groups
Observability of rectangular membranes and plates on small sets
1. | Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex |
2. | Sapienza Università di Roma, Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sezione Matematica, Via A. Scarpa n.16 00161 Roma |
  In the second part of the paper we establish various observability theorems for rectangular membranes by applying Mehrenberger's recent generalization of Ingham's theorem.
References:
[1] |
C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8), 2 (1999), 33-63. |
[2] |
C. Baiocchi, V. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.
doi: 10.1023/A:1020806811956. |
[3] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[4] |
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. |
[5] |
S. Gasmi and A. Haraux, $N$-cyclic functions and multiple subharmonic solutions of Duffing's equation, J. Math. Pures Appl., 97 (2012), 411-423.
doi: 10.1016/j.matpur.2009.08.005. |
[6] |
A. Haraux, On a completion problem in the theory of distributed control of wave equations, in Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991, 241-271. |
[7] |
A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. |
[8] |
L. F. Ho, Observabilité frontière de l'équation des ondes, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443-446. |
[9] |
A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.
doi: 10.1007/BF01180426. |
[10] |
S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 759-762. |
[11] |
S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire, Portugalia Math., 47 (1990), 423-429. |
[12] |
V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005. |
[13] |
V. Komornik and P. Loreti, Multiple-point internal observability of membranes and plates, Appl. Anal., 90 (2011), 1545-1555.
doi: 10.1080/00036811.2011.569497. |
[14] |
V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes, Evol. Equations and Control Theory, 3 (2014), 135-146.
doi: 10.3934/eect.2014.3.135. |
[15] |
J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[16] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte, Masson, Paris, 1988. |
[17] |
P. Loreti, On some gap theorems, in European Women in Mathematics-Marseille 2003, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, 2005, 39-45. |
[18] |
P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem, ESAIM Control Optim. Calc. Var., 14 (2008), 604-631.
doi: 10.1051/cocv:2007062. |
[19] |
P. Loreti and V. Valente, Partial exact controllability for spherical membranes, SIAM J. Control Optim., 35 (1997), 641-653.
doi: 10.1137/S036301299526962X. |
[20] |
M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.
doi: 10.1016/j.crma.2008.11.002. |
[21] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation, J. Fourier Anal. Appl., 19 (2013), 514-544.
doi: 10.1007/s00041-013-9267-4. |
[22] |
G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., 361 (2009), 951-977.
doi: 10.1090/S0002-9947-08-04584-4. |
show all references
References:
[1] |
C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8), 2 (1999), 33-63. |
[2] |
C. Baiocchi, V. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.
doi: 10.1023/A:1020806811956. |
[3] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[4] |
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. |
[5] |
S. Gasmi and A. Haraux, $N$-cyclic functions and multiple subharmonic solutions of Duffing's equation, J. Math. Pures Appl., 97 (2012), 411-423.
doi: 10.1016/j.matpur.2009.08.005. |
[6] |
A. Haraux, On a completion problem in the theory of distributed control of wave equations, in Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991, 241-271. |
[7] |
A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. |
[8] |
L. F. Ho, Observabilité frontière de l'équation des ondes, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443-446. |
[9] |
A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.
doi: 10.1007/BF01180426. |
[10] |
S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 759-762. |
[11] |
S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire, Portugalia Math., 47 (1990), 423-429. |
[12] |
V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005. |
[13] |
V. Komornik and P. Loreti, Multiple-point internal observability of membranes and plates, Appl. Anal., 90 (2011), 1545-1555.
doi: 10.1080/00036811.2011.569497. |
[14] |
V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes, Evol. Equations and Control Theory, 3 (2014), 135-146.
doi: 10.3934/eect.2014.3.135. |
[15] |
J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[16] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte, Masson, Paris, 1988. |
[17] |
P. Loreti, On some gap theorems, in European Women in Mathematics-Marseille 2003, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, 2005, 39-45. |
[18] |
P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem, ESAIM Control Optim. Calc. Var., 14 (2008), 604-631.
doi: 10.1051/cocv:2007062. |
[19] |
P. Loreti and V. Valente, Partial exact controllability for spherical membranes, SIAM J. Control Optim., 35 (1997), 641-653.
doi: 10.1137/S036301299526962X. |
[20] |
M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.
doi: 10.1016/j.crma.2008.11.002. |
[21] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation, J. Fourier Anal. Appl., 19 (2013), 514-544.
doi: 10.1007/s00041-013-9267-4. |
[22] |
G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., 361 (2009), 951-977.
doi: 10.1090/S0002-9947-08-04584-4. |
[1] |
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026 |
[2] |
G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509 |
[3] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[4] |
Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014 |
[5] |
Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129 |
[6] |
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 |
[7] |
Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104 |
[8] |
Bei Gong, Zhen-Hu Ning, Fengyan Yang. Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $. Evolution Equations and Control Theory, 2021, 10 (2) : 321-331. doi: 10.3934/eect.2020068 |
[9] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations and Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[10] |
Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008 |
[11] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[12] |
Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013 |
[13] |
Ferenc Weisz. Cesàro summability and Lebesgue points of higher dimensional Fourier series. Mathematical Foundations of Computing, 2022, 5 (3) : 241-257. doi: 10.3934/mfc.2021033 |
[14] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[15] |
Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 |
[16] |
Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007 |
[17] |
Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720 |
[18] |
Nikita Kalinin, Mikhail Shkolnikov. Introduction to tropical series and wave dynamic on them. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2827-2849. doi: 10.3934/dcds.2018120 |
[19] |
Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1269-1305. doi: 10.3934/dcdss.2021091 |
[20] |
Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations and Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]