-
Previous Article
Lower semicontinuity for polyconvex integrals without coercivity assumptions
- EECT Home
- This Issue
-
Next Article
Preface
First-order inverse evolution equations
1. | Department of Mathematics, The University of Jordan, Amman |
2. | Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna |
References:
[1] |
M. Al Horani, An identification problem for some degenerate differential equations, Matematiche (Catania), 57 (2002), 217-227. |
[2] |
M. Al Horani, Projection method for solving degenerate first-order identification problem, J. Math. Anal. Appl., 364 (2010), 204-208.
doi: 10.1016/j.jmaa.2009.10.033. |
[3] |
M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130 (2006), 41-60.
doi: 10.1007/s10957-006-9083-y. |
[4] |
M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces, Differential Equations, Inverse and Direct Problems, Taylor and Francis Group, Boca Raton (eds. A. Favini and A. Lorenzi), 1-15.
doi: 10.1201/9781420011135.ch1. |
[5] |
M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations, Preprint. |
[6] |
W. Desch and W. Schappacher, On relatively bounded perturbations of linear $C_0$-semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 327-341. |
[7] |
N. Dunford and T. Schwarz, Linear Operators, I, Wiley (Interscience), New York, 1958. |
[8] |
K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., Springer-Verlag, Berlin-Heidelgerg-New York, 2000. |
[9] |
A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I, Dynamics of Continuous, Discrete and Impulsive Systems, Series A; Mathematical Analysis, 12 (2005), 303-328. |
[10] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker. Inc., New York, 1999. |
[11] |
A. Favini and S. Romanelli, Analicity semigroups on $C[0,1]$ generated by some classes of second order differential equations, Semigroup Forum, 56 (1998), 362-372. |
[12] |
G. Greiner, Spectral properties and asymptotic behavior of the linear transport equation, Math. Zeit., 185 (1984), 167-177.
doi: 10.1007/BF01181687. |
[13] |
A. Lorenzi, An Introduction to Identification Problems Via Functional Analysis, VSP, Utrecht, The Netherland, 2001.
doi: 10.1515/9783110940923. |
[14] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, $1^{ist}$ ed, Birkhäuser, Basel, 1995. |
[15] |
I. Prilepko, G. Orlovsky and A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker. Inc., New York, 2000. |
[16] |
E. Sinestrari, Wave equation with memory, Discrete Contin. Dynam. Systems, 5 (1999), 881-896.
doi: 10.3934/dcds.1999.5.881. |
[17] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amesterdam, 1978. |
show all references
References:
[1] |
M. Al Horani, An identification problem for some degenerate differential equations, Matematiche (Catania), 57 (2002), 217-227. |
[2] |
M. Al Horani, Projection method for solving degenerate first-order identification problem, J. Math. Anal. Appl., 364 (2010), 204-208.
doi: 10.1016/j.jmaa.2009.10.033. |
[3] |
M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130 (2006), 41-60.
doi: 10.1007/s10957-006-9083-y. |
[4] |
M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces, Differential Equations, Inverse and Direct Problems, Taylor and Francis Group, Boca Raton (eds. A. Favini and A. Lorenzi), 1-15.
doi: 10.1201/9781420011135.ch1. |
[5] |
M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations, Preprint. |
[6] |
W. Desch and W. Schappacher, On relatively bounded perturbations of linear $C_0$-semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 327-341. |
[7] |
N. Dunford and T. Schwarz, Linear Operators, I, Wiley (Interscience), New York, 1958. |
[8] |
K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., Springer-Verlag, Berlin-Heidelgerg-New York, 2000. |
[9] |
A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I, Dynamics of Continuous, Discrete and Impulsive Systems, Series A; Mathematical Analysis, 12 (2005), 303-328. |
[10] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker. Inc., New York, 1999. |
[11] |
A. Favini and S. Romanelli, Analicity semigroups on $C[0,1]$ generated by some classes of second order differential equations, Semigroup Forum, 56 (1998), 362-372. |
[12] |
G. Greiner, Spectral properties and asymptotic behavior of the linear transport equation, Math. Zeit., 185 (1984), 167-177.
doi: 10.1007/BF01181687. |
[13] |
A. Lorenzi, An Introduction to Identification Problems Via Functional Analysis, VSP, Utrecht, The Netherland, 2001.
doi: 10.1515/9783110940923. |
[14] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, $1^{ist}$ ed, Birkhäuser, Basel, 1995. |
[15] |
I. Prilepko, G. Orlovsky and A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker. Inc., New York, 2000. |
[16] |
E. Sinestrari, Wave equation with memory, Discrete Contin. Dynam. Systems, 5 (1999), 881-896.
doi: 10.3934/dcds.1999.5.881. |
[17] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amesterdam, 1978. |
[1] |
Viorel Nitica, Andrei Török. On a semigroup problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2365-2377. doi: 10.3934/dcdss.2019148 |
[2] |
Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361 |
[3] |
Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027 |
[4] |
Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai. The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15 (4) : 681-710. doi: 10.3934/nhm.2020019 |
[5] |
Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022014 |
[6] |
Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758 |
[7] |
Rainer Steinwandt, Adriana Suárez Corona. Cryptanalysis of a 2-party key establishment based on a semigroup action problem. Advances in Mathematics of Communications, 2011, 5 (1) : 87-92. doi: 10.3934/amc.2011.5.87 |
[8] |
Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022 |
[9] |
Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2829-2840. doi: 10.3934/dcdss.2020121 |
[10] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[11] |
Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024 |
[12] |
Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002 |
[13] |
J. W. Neuberger. How to distinguish a local semigroup from a global semigroup. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5293-5303. doi: 10.3934/dcds.2013.33.5293 |
[14] |
Andrzej Biś. Entropies of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 639-648. doi: 10.3934/dcds.2004.11.639 |
[15] |
Michael Blank. Recurrence for measurable semigroup actions. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1649-1665. doi: 10.3934/dcds.2020335 |
[16] |
Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333 |
[17] |
Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263 |
[18] |
Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089 |
[19] |
Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106 |
[20] |
Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]