Citation: |
[1] |
G. Amendola and S. Carillo, Thermal work and minimum free energy in a heat conductor with memory, Quart. J. of Mech. and Appl. Math., 57 (2004), 429-446.doi: 10.1093/qjmam/57.3.429. |
[2] |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York, 2012.doi: 10.1007/978-1-4614-1692-0. |
[3] |
S. Carillo, V. Valente and G. Vergara Caffarelli, A result of existence and uniqueness for an integro-differential system in magneto-viscoelasticity, Applicable Analisys: An International Journal, 1563-504X, First published on 19 August 2010, 90 (2011), 1791-1802.doi: 10.1080/00036811003735832. |
[4] |
S. Carillo, V. Valente and G. Vergara Caffarelli, An existence theorem for the magnetic-viscoelastic problem, Discrete and Continuous Dynamical Systems Series S., 5 (2012), 435-447.doi: 10.3934/dcdss.2012.5.435. |
[5] |
S. Carillo, V. Valente and G. Vergara Caffarelli, A linear viscoelasticity problem with a singular memory kernel: an existence and uniqueness result, Differential and Integral Equations, 26 (2013), 1115-1125.doi: http://projecteuclid.org/euclid.die/1372858565. |
[6] |
S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, in preparation, (2014). |
[7] |
S. Carillo, Some remarks on materials with memory: heat conduction and viscoelasticity, Journal of Nonlinear Mathematical Physics Supplement 1, 12 (2005), 163-178.doi: 10.2991/jnmp.2005.12.s1.14. |
[8] |
S. Carillo, Evolution problems in materials with fading memory, Matematiche (Catania), 62 (2007), 93-105.doi: http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/30/29. |
[9] |
S. Carillo, An evolution problem in materials with fading memory: Solution's existence and uniqueness, Complex Variables and Elliptic Equations An International Journal, 56 (2011), 481-492.doi: 10.1080/17476931003786667. |
[10] |
S. Carillo, Materials with mMemory: Free energies & solutions' exponential decay, Commun. Pure Appl. Anal., 9 (2010), 1235-1248.doi: 10.3934/cpaa.2010.9.1235. |
[11] |
C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Universitá Modena, 3 (1948), 83-101. |
[12] |
V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory, Asymptotic Analysis, 50 (2006), 269-291. |
[13] |
M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, A nonlocal problem arising in the study of magneto-elastic interactions, Boll. UMI Serie IX, I (2008), 197-222. |
[14] |
M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, On a hyperbolic-parabolic system arising in magneto-elasticity, J. Math. Anal. Appl., 352 (2009), 120-131.doi: 10.1016/j.jmaa.2008.04.013. |
[15] |
B. D. Coleman, Thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 17 (1964), 1-46.doi: 10.1007/BF00283864. |
[16] |
B. D. Coleman and E. H. Dill, On thermodynamics and stability of materials with memory, Arch. Rat. Mech. Anal., 51 (1973), 1-53.doi: 10.1007/BF00275991. |
[17] |
C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Diff. Equations, 7 (1970), 554-569.doi: 10.1016/0022-0396(70)90101-4. |
[18] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), 297-308.doi: 10.1007/BF00251609. |
[19] |
M. Fabrizio, G. Gentili and D. W. Reynolds, On rigid heat conductors with memory, Int. J. Eng. Sci., 36 (1998), 765-782.doi: 10.1016/S0020-7225(97)00123-7. |
[20] |
M. Fabrizio, B. Lazzari and A. Morro, Mathematical Models and Methods for Smart Materials, Series on Advances in Mathematics for Applied Sciences, World Scientific Publishing Co., Inc., River Edge, NJ, 62, 2002.doi: 10.1142/5162. |
[21] |
C. Giorgi and G. Gentili, Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., 51 (1993), 343-62. |
[22] |
C. Giorgi and V. Pata, Asymptotic behavior of a nonlinear hyperbolic heat equation with memory, Nonlinear Differential Equations and Applications, 8 (2001), 157-171.doi: 10.1007/PL00001443. |
[23] |
M. Grasselli and A. Lorenzi, Abstract nonlinear Volterra integro-differential equations with nonsmooth kernels, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2 (1991), 43-53. |
[24] |
M. E. Gurtin, Modern Continuum Thermodynamics, Mechanics Today, 1 (1972), 168-213. |
[25] |
M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968), 113-126.doi: 10.1007/BF00281373. |
[26] |
J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in viscoelasticity, ZAMM Z. Angew. Math. Mech., 78 (1998), 391-403.doi: 10.1002/(SICI)1521-4001(199806)78:6<391::AID-ZAMM391>3.3.CO;2-A. |
[27] |
J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in heat conduction, Z. Angew. Math. Mech., 77 (1997), 243-257.doi: 10.1002/zamm.19970770403. |
[28] |
M. McCarthy, Constitutive equations for thermomechanical materials with memory, Int. J. Eng. Sci., 8 (1970), 467-474.doi: 10.1016/0020-7225(70)90023-6. |
[29] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, Imperial College Press, London, 2010.doi: 10.1142/9781848163300. |
[30] |
E. Mainini and G. Mola, Exponential and polynomial decay for first order linear Volterra evolution equations, Quart. Appl. Math., 67 (2009), 93-111. |
[31] |
B. Miara, G. Stavroulakis and V. Valente, Topics on Mathematics for Smart Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. |
[32] |
R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Math. Anal., 2 (1971), 242-258.doi: 10.1137/0502022. |
[33] |
N.-E. Tatar, Exponential decay for a viscoelastic problem with a singular kernel, Zeitschrift fur Angewandte Mathematik und Physik, 60 (2009), 640-650.doi: 10.1007/s00033-008-8030-1. |
[34] |
V. Valente and G. Vergara Caffarelli, On the dynamics of magneto-elastic interactions: Existence of solutions and limit behavior, Asymptotic Analysis, 51 (2007), 319-333. |
[35] |
G. Vergara Caffarelli, Dissipativity and uniqueness for the one-dimensional dynamical problem of linear viscoelasticity, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1990), 483-488. |
[36] |
G. Vergara Caffarelli, Dissipativity and existence for the one-dimensional dynamical problem of linear viscoelasticity, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), 489-496. |
[37] |
S. T. Wu, Exponential decay for a nonlinear viscoelastic equation with singular kernels, Acta. Mathematica Scientia, 32 (2012), 2237-2246.doi: 10.1016/S0252-9602(12)60173-8. |