Advanced Search
Article Contents
Article Contents

Steady free fall of one-dimensional bodies in a hyperviscous fluid at low Reynolds number

Abstract Related Papers Cited by
  • The paper is devoted to the study of the motion of one-dimensional rigid bodies during a free fall in a quasi-Newtonian hyperviscous fluid at low Reynolds number. We show the existence of a steady solution and furnish sufficient conditions on the geometry of the body in order to get purely translational motions. Such conditions are based on a generalized version of the so-called Reciprocal Theorem for fluids.
    Mathematics Subject Classification: Primary: 76D07; Secondary: 35Q35, 35J91.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.doi: 10.1002/cpa.3160120405.


    H. Brenner, The Stokes resistance of an arbitrary particle-II: An extension, Chem. Eng. Sci., 19 (1964), 599-629.doi: 10.1016/0009-2509(64)85051-X.


    E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.doi: 10.1007/s00205-006-0015-7.


    G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, in Handbook of mathematical fluid dynamics. North-Holland, Amsterdam, 1 (2002), 653-791.doi: 10.1016/S1874-5792(02)80014-3.


    G. G. Giusteri, The multiple nature of concentrated interactions in second-gradient dissipative liquids, Z. Angew. Math. Phys., 64 (2013), 371-380.doi: 10.1007/s00033-012-0229-5.


    G. G. Giusteri and E. Fried, Slender-body theory for viscous flow via dimensional reduction and hyperviscous regularization, Meccanica, 49 (2014), 2153-2167.doi: 10.1007/s11012-014-9890-4.


    G. G. Giusteri, A. Marzocchi and A. Musesti, Three-dimensional nonsimple viscous liquids dragged by one-dimensional immersed bodies, Mech. Res. Commun., 37 (2010), 642-646.doi: 10.1016/j.mechrescom.2010.09.001.


    G. G. Giusteri, A. Marzocchi, and A. Musesti, Nonsimple isotropic incompressible linear fluids surrounding one-dimensional structures, Acta Mech., 217 (2011), 191-204.doi: 10.1007/s00707-010-0387-5.


    G. G. Giusteri, A. Marzocchi, and A. Musesti, Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids, DCDS-B, 19 (2014), 2145-2157.doi: 10.3934/dcdsb.2014.19.2145.


    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Martinus Nijhoff Publishers, The Hague, 1983.


    A. Musesti, Isotropic linear constitutive relations for nonsimple fluids, Acta Mech., 204 (2009), 81-88.doi: 10.1007/s00707-008-0050-6.


    H. F. Weinberger, Variational properties of steady fall in Stokes flow, J. Fluid Mech., 52 (1972), 321-344.doi: 10.1017/S0022112072001442.

  • 加载中

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint