September  2014, 3(3): 447-483. doi: 10.3934/eect.2014.3.447

Constructing free energies for materials with memory

1. 

School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

Received  January 2013 Revised  February 2014 Published  August 2014

The free energy for most materials with memory is not unique. There is a convex set of free energy functionals with a minimum and a maximum element. Various functionals have been shown to have the properties of a free energy for materials with particular types of relaxation behaviour. Also, over the last decade or more, forms have been given for the minimum and related free energies. These are all quadratic functionals which yield linear memory terms in the constitutive equations for the stress.
    A difficulty in constructing free energy functionals arises in making choices that ensure a non-negative quadratic form both for the free energy and for the rate of dissipation. We propose a technique which renders this task more straightforward. Instead of constructing the free energy and determining from this the rate of dissipation, which may not have the required non-negativity, the procedure is reversed, which guarantees a satisfactory free energy functional.
    Certain results for quadratic functionals in the time and frequency domains are derived, providing a platform for this alternative approach, which produces new free energies, including a family of functionals that are generalizations of the minimum and related free energies.
Citation: John Murrough Golden. Constructing free energies for materials with memory. Evolution Equations and Control Theory, 2014, 3 (3) : 447-483. doi: 10.3934/eect.2014.3.447
References:
[1]

G. Amendola, M. Fabrizio and J. M. Golden, Free energies in a general non-local theory of a material with memory, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1037-1090. doi: 10.1142/S0218202513500760.

[2]

G. Amendola, M. Fabrizio and M. Golden, Thermodynamics of Materials with Memory: Theory and Applications, Springer, New York, 2012. doi: 10.1007/978-1-4614-1692-0.

[3]

G. Amendola, M. Fabrizio and J. M. Golden, Algebraic and numerical exploration of free energies for materials with memory, submitted for publication.

[4]

V. Berti and G. Gentili, The minimum free energy for isothermal dielectrics with memory, J. Non-Equil. Thermodyn., 24 (1999), 154-176.

[5]

B. D. Coleman, Thermodynamics of materials with memory, Arch. Rational Mech. Anal., 17 (1964), 1-46. doi: 10.1007/BF00283864.

[6]

W. A. Day, The thermodynamics of materials with memory, in Materials with Memory, (ed. D. Graffi), Liguori, Naples, (1979).

[7]

G. Del Piero and L. Deseri, On the analytic expression of the free energy in linear viscoelasticity, J. Elasticity, 43 (1996), 247-278. doi: 10.1007/BF00042503.

[8]

G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity, Arch. Rational Mech. Anal., 138 (1997), 1-35. doi: 10.1007/s002050050035.

[9]

L. Deseri, M. Di Paola, P. Pollaci and M. Zingales, The state of fractional hereditary materials (FHM), Discrete and Continuous Dynamical Systems - B to appear.

[10]

L. Deseri, G. Gentili and J. M. Golden, An explicit formula for the minimum free energy in linear viscoelasticity, J. Elasticity, 54 (1999), 141-185. doi: 10.1023/A:1007646017347.

[11]

L. Deseri, M. Fabrizio and J. M. Golden, On the concept of a minimal state in viscoelasticity: New free energies and applications to $PDE_S$, Arch. Rational Mech. Anal., 181 (2006), 43-96. doi: 10.1007/s00205-005-0406-1.

[12]

L. Deseri and J. M. Golden, The minimum free energy for continuous spectrum materials, SIAM J. Appl Math., 67 (2007), 869-892. doi: 10.1137/050639776.

[13]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.

[14]

M. Fabrizio and J. M. Golden, Maximum and minimum free energies for a linear viscoelastic material, Quart. Appl. Math., 60 (2002), 341-381.

[15]

M. Fabrizio, G. Gentili and J. M. Golden, Nonisothermal free energies for linear theories with memory, Mathematical and Computer Modeling, 39 (2004), 219-253. doi: 10.1016/S0895-7177(04)90009-X.

[16]

M. Fabrizio, C. Giorgi and V. Pata, A new approach to equations with memory, Arch. Rational Mech. Anal., 198 (2010), 189-232. doi: 10.1007/s00205-010-0300-3.

[17]

J. M. Golden, Free energies in the frequency domain: The scalar case, Quart. Appl. Math., 58 (2000), 127-150.

[18]

J. M. Golden, A proposal concerning the physical rate of dissipation in materials with memory, Quart. Appl. Math., 63 (2005), 117-155. doi: 10.1177/1081286506061450.

[19]

J. M. Golden, A proposal concerning the physical dissipation of materials with memory: the non-isothermal case, Mathematics and Mechanics of Solids, 12 (2007), 403-449. doi: 10.1177/1081286505061450.

[20]

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York, 1965.

[21]

D. Graffi, Analytic expression of some thermodynamic quantities in materials with memory, Rend. Sem. Mat. Univ. Padova, 68 (1982), 17-29.

[22]

D. Graffi and M. Fabrizio, On the notion of state for viscoelastic materials of "rate'' type, Atti della Accademia Nazionale dei Lincei, 83 (1990), 201-208.

[23]

D. Graffi, More on the analytic expression of free energy in materials with memory, Atti Acc. Scienze Torino, 120 (1986), 111-124.

[24]

W. Noll, A new mathematical theory of simple materials, Arch. Rational Mech. Anal., 48 (1972), 1-50. doi: 10.1007/BF00253367.

show all references

References:
[1]

G. Amendola, M. Fabrizio and J. M. Golden, Free energies in a general non-local theory of a material with memory, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1037-1090. doi: 10.1142/S0218202513500760.

[2]

G. Amendola, M. Fabrizio and M. Golden, Thermodynamics of Materials with Memory: Theory and Applications, Springer, New York, 2012. doi: 10.1007/978-1-4614-1692-0.

[3]

G. Amendola, M. Fabrizio and J. M. Golden, Algebraic and numerical exploration of free energies for materials with memory, submitted for publication.

[4]

V. Berti and G. Gentili, The minimum free energy for isothermal dielectrics with memory, J. Non-Equil. Thermodyn., 24 (1999), 154-176.

[5]

B. D. Coleman, Thermodynamics of materials with memory, Arch. Rational Mech. Anal., 17 (1964), 1-46. doi: 10.1007/BF00283864.

[6]

W. A. Day, The thermodynamics of materials with memory, in Materials with Memory, (ed. D. Graffi), Liguori, Naples, (1979).

[7]

G. Del Piero and L. Deseri, On the analytic expression of the free energy in linear viscoelasticity, J. Elasticity, 43 (1996), 247-278. doi: 10.1007/BF00042503.

[8]

G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity, Arch. Rational Mech. Anal., 138 (1997), 1-35. doi: 10.1007/s002050050035.

[9]

L. Deseri, M. Di Paola, P. Pollaci and M. Zingales, The state of fractional hereditary materials (FHM), Discrete and Continuous Dynamical Systems - B to appear.

[10]

L. Deseri, G. Gentili and J. M. Golden, An explicit formula for the minimum free energy in linear viscoelasticity, J. Elasticity, 54 (1999), 141-185. doi: 10.1023/A:1007646017347.

[11]

L. Deseri, M. Fabrizio and J. M. Golden, On the concept of a minimal state in viscoelasticity: New free energies and applications to $PDE_S$, Arch. Rational Mech. Anal., 181 (2006), 43-96. doi: 10.1007/s00205-005-0406-1.

[12]

L. Deseri and J. M. Golden, The minimum free energy for continuous spectrum materials, SIAM J. Appl Math., 67 (2007), 869-892. doi: 10.1137/050639776.

[13]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.

[14]

M. Fabrizio and J. M. Golden, Maximum and minimum free energies for a linear viscoelastic material, Quart. Appl. Math., 60 (2002), 341-381.

[15]

M. Fabrizio, G. Gentili and J. M. Golden, Nonisothermal free energies for linear theories with memory, Mathematical and Computer Modeling, 39 (2004), 219-253. doi: 10.1016/S0895-7177(04)90009-X.

[16]

M. Fabrizio, C. Giorgi and V. Pata, A new approach to equations with memory, Arch. Rational Mech. Anal., 198 (2010), 189-232. doi: 10.1007/s00205-010-0300-3.

[17]

J. M. Golden, Free energies in the frequency domain: The scalar case, Quart. Appl. Math., 58 (2000), 127-150.

[18]

J. M. Golden, A proposal concerning the physical rate of dissipation in materials with memory, Quart. Appl. Math., 63 (2005), 117-155. doi: 10.1177/1081286506061450.

[19]

J. M. Golden, A proposal concerning the physical dissipation of materials with memory: the non-isothermal case, Mathematics and Mechanics of Solids, 12 (2007), 403-449. doi: 10.1177/1081286505061450.

[20]

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York, 1965.

[21]

D. Graffi, Analytic expression of some thermodynamic quantities in materials with memory, Rend. Sem. Mat. Univ. Padova, 68 (1982), 17-29.

[22]

D. Graffi and M. Fabrizio, On the notion of state for viscoelastic materials of "rate'' type, Atti della Accademia Nazionale dei Lincei, 83 (1990), 201-208.

[23]

D. Graffi, More on the analytic expression of free energy in materials with memory, Atti Acc. Scienze Torino, 120 (1986), 111-124.

[24]

W. Noll, A new mathematical theory of simple materials, Arch. Rational Mech. Anal., 48 (1972), 1-50. doi: 10.1007/BF00253367.

[1]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793

[2]

Kongzhi Li, Xiaoping Xue. The Łojasiewicz inequality for free energy functionals on a graph. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2661-2677. doi: 10.3934/cpaa.2022066

[3]

Luciano Pandolfi. Joint identification via deconvolution of the flux and energy relaxation kernels of the Gurtin-Pipkin model in thermodynamics with memory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1589-1599. doi: 10.3934/dcdss.2020090

[4]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[5]

Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086

[6]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations and Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[7]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

[8]

Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892

[9]

Julius Fergy T. Rabago, Hideyuki Azegami. A new energy-gap cost functional approach for the exterior Bernoulli free boundary problem. Evolution Equations and Control Theory, 2019, 8 (4) : 785-824. doi: 10.3934/eect.2019038

[10]

Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic and Related Models, 2019, 12 (6) : 1229-1245. doi: 10.3934/krm.2019047

[11]

Eric Goles, Pedro Montealegre, Martín Ríos-Wilson. On the effects of firing memory in the dynamics of conjunctive networks. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5765-5793. doi: 10.3934/dcds.2020245

[12]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[13]

Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memory-type dissipation. Kinetic and Related Models, 2011, 4 (2) : 531-547. doi: 10.3934/krm.2011.4.531

[14]

Xianyun Chen, Daozhou Gao. Effects of travel frequency on the persistence of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4677-4701. doi: 10.3934/dcdsb.2020119

[15]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[16]

Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119

[17]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 197-212. doi: 10.3934/dcdss.2021036

[18]

Alessandro Ferriero. Action functionals that attain regular minima in presence of energy gaps. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 675-690. doi: 10.3934/dcds.2007.19.675

[19]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[20]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]