-
Previous Article
On the nonlinear stability of ternary porous media via only one necessary and sufficient algebraic condition
- EECT Home
- This Issue
-
Next Article
Lack of controllability of thermal systems with memory
A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$
1. | Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano |
2. | Dipartimento di Matematica, Università degli Studi di Parma, Viale Parco Area delle Scienze 53/A, I-43124 Parma |
References:
[1] |
D. Bainov and P. Simeonov, Integral Inequalities and Applications, Translated by R. A. M. Hoksbergen and V. Covachev [V. Khr. Kovachev], Mathematics and its Applications (East European Series), 57, Kluwer Academic Publishers Group, Dordrecht, 1992.
doi: 10.1007/978-94-015-8034-2. |
[2] |
P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003, 20 pp.
doi: 10.1088/0266-5611/26/10/105003. |
[3] |
M. Choulli, Une Introduction aux Problèms Inverses Elliptiques et Paraboliques, Mathematiques and Applications, 65, Springer-Verlag, Berlin Heidelberg, 2009.
doi: 10.1007/978-3-642-02460-3. |
[4] | |
[5] |
A. Lorenzi, Two strongly ill-posed problems, AIP Conference Proceedings, Melville, New York, 1329 (2011), 150-169. |
[6] |
A. Lorenzi, Recovering a constant in a strongly ill-posed parabolic problem, J. Abstr. Differ. Equ. Appl., 2 (2012), 72-92. |
[7] |
A. Lorenzi, Linear integro-differential Schrödinger and plate problems without initial conditions, Appl. Math. Optim., 67 (2013), 391-418.
doi: 10.1007/s00245-013-9192-6. |
[8] |
A. Lorenzi, Severely ill-posed linear parabolic integrodifferential problems, J. Inverse Ill-Posed Probl., (2012). |
[9] |
A. Lorenzi, Recovering a t-function in a strongly ill-posed integro-differential parabolic problem with integral boundary conditions,, to appear in Mathematical Modelling and Analysis., ().
|
[10] |
A. Lorenzi and L. Lorenzi, A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain $\Omega\times \mathcal O$ of $\mathbb R^{M+N}$, Inverse Problems, 29 (2013), 025007, 22 pp.
doi: 10.1088/0266-5611/29/2/025007. |
[11] |
A. Lorenzi and F. Messina, Unique continuation and continuous dependence results for a strongly ill-posed integro-differential parabolic problem, J. Inverse Ill-Posed Probl., 20 (2012), 615-636.
doi: 10.1515/jip-2012-0032. |
[12] |
A. Lorenzi and I. Munteanu, Recovering a constant in the two-dimensional Navier-Stokes system with no initial condition,, to appear in Applied Mathematics and Optimization., ().
doi: 10.1007/s00245-014-9261-5. |
[13] |
A. Lorenzi and M. Yamamoto, Continuous dependence and uniqueness for a strongly ill-posed problem for linear integrodifferential parabolic equations,, in progress., ().
|
show all references
References:
[1] |
D. Bainov and P. Simeonov, Integral Inequalities and Applications, Translated by R. A. M. Hoksbergen and V. Covachev [V. Khr. Kovachev], Mathematics and its Applications (East European Series), 57, Kluwer Academic Publishers Group, Dordrecht, 1992.
doi: 10.1007/978-94-015-8034-2. |
[2] |
P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003, 20 pp.
doi: 10.1088/0266-5611/26/10/105003. |
[3] |
M. Choulli, Une Introduction aux Problèms Inverses Elliptiques et Paraboliques, Mathematiques and Applications, 65, Springer-Verlag, Berlin Heidelberg, 2009.
doi: 10.1007/978-3-642-02460-3. |
[4] | |
[5] |
A. Lorenzi, Two strongly ill-posed problems, AIP Conference Proceedings, Melville, New York, 1329 (2011), 150-169. |
[6] |
A. Lorenzi, Recovering a constant in a strongly ill-posed parabolic problem, J. Abstr. Differ. Equ. Appl., 2 (2012), 72-92. |
[7] |
A. Lorenzi, Linear integro-differential Schrödinger and plate problems without initial conditions, Appl. Math. Optim., 67 (2013), 391-418.
doi: 10.1007/s00245-013-9192-6. |
[8] |
A. Lorenzi, Severely ill-posed linear parabolic integrodifferential problems, J. Inverse Ill-Posed Probl., (2012). |
[9] |
A. Lorenzi, Recovering a t-function in a strongly ill-posed integro-differential parabolic problem with integral boundary conditions,, to appear in Mathematical Modelling and Analysis., ().
|
[10] |
A. Lorenzi and L. Lorenzi, A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain $\Omega\times \mathcal O$ of $\mathbb R^{M+N}$, Inverse Problems, 29 (2013), 025007, 22 pp.
doi: 10.1088/0266-5611/29/2/025007. |
[11] |
A. Lorenzi and F. Messina, Unique continuation and continuous dependence results for a strongly ill-posed integro-differential parabolic problem, J. Inverse Ill-Posed Probl., 20 (2012), 615-636.
doi: 10.1515/jip-2012-0032. |
[12] |
A. Lorenzi and I. Munteanu, Recovering a constant in the two-dimensional Navier-Stokes system with no initial condition,, to appear in Applied Mathematics and Optimization., ().
doi: 10.1007/s00245-014-9261-5. |
[13] |
A. Lorenzi and M. Yamamoto, Continuous dependence and uniqueness for a strongly ill-posed problem for linear integrodifferential parabolic equations,, in progress., ().
|
[1] |
Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 |
[2] |
Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467 |
[3] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021051 |
[4] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems on degenerate integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022025 |
[5] |
Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479 |
[6] |
Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations and Control Theory, 2022, 11 (1) : 1-24. doi: 10.3934/eect.2020100 |
[7] |
Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249 |
[8] |
Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191 |
[9] |
Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517 |
[10] |
Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053 |
[11] |
Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems and Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17 |
[12] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
[13] |
Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283 |
[14] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[15] |
Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155 |
[16] |
Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053 |
[17] |
Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure and Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261 |
[18] |
Xinjie Dai, Aiguo Xiao, Weiping Bu. Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler–Maruyama approximation. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021225 |
[19] |
Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129 |
[20] |
Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]