Citation: |
[1] |
K. Aoki, M. Shida and N. Shigesada, Travelling wave solutions for the spread of farmers into a region occupied by hunter-gatherers, Theor. Popul. Biol., 50 (1996), 1-17.doi: 10.1006/tpbi.1996.0020. |
[2] |
E. Barbera, C. Currò and G. Valenti, A hyperbolic reaction-diffusion model for the hantavirus infection, Math. Meth. Appl. Science, 31 (2002), 481-499.doi: 10.1002/mma.929. |
[3] |
N. Bellomo and A. Bellouquid, On the modelling of crowd dynamics, looking at the beautiful shapes of swarms, Netw. Heterog. Media, 6 (2011), 383-399.doi: 10.3934/nhm.2011.6.383. |
[4] |
N. Bellomo, B. Piccoli and A. Tosin, Modelling crowd dynamics from a complex system viewpoint, Math. Models Meth. Appl. Science, 22 (2012), 29 pp.doi: 10.1142/S0218202512300049. |
[5] |
J. J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Compartmental modelling of social dynamics with generalised peer incidence, Math. Models Meth. Appl. Science, 24 (2014), 719-750.doi: 10.1142/S0218202513500656. |
[6] |
J. J. Bissell and B. Straughan, Discontinuity waves as tipping points, Discrete and Continuous Dynamical Systems B, 19 (2014), 1911-1934. |
[7] |
C. I. Christov, On frame indifferent formulation of the Maxwell - Cattaneo model of finite - speed heat conduction, Mech. Res. Comm., 36 (2009), 481-486.doi: 10.1016/j.mechrescom.2008.11.003. |
[8] |
I. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation, New J. Phys., 10 (2008).doi: 10.1088/1367-2630/10/4/043027. |
[9] |
I. Christov and P. M. Jordan, Shock and traveling wave phenomena on an externally damped, non-linear string, Int. J. Nonlinear Mech., 44 (2009), 511-519.doi: 10.1016/j.ijnonlinmec.2008.12.004. |
[10] |
I. Christov and P. M. Jordan, On the propagation of second - sound in nonlinear media: shock, acceleration and traveling wave results, J. Thermal Stresses, 33 (2010), 1109-1135.doi: 10.1080/01495739.2010.517674. |
[11] |
I. Christov, P. M. Jordan and C. I. Christov, Nonlinear acoustic propagation in homentropic perfect gases: a numerical study, Phys. Lett. A, 353 (2006), 273-280.doi: 10.1016/j.physleta.2005.12.101. |
[12] |
I. Christov, P. M. Jordan and C. I. Christov, Modelling weakly nonlinear acoustic wave propagation, Quart. Jl Mech. Appl. Math., 60 (2007), 473-495.doi: 10.1093/qjmam/hbm017. |
[13] |
C. Ciarcià, P. Falsaperla, A. Giacobbe and G. Mulone, A mathematical model of anorexia and bulimia, Manuscript, (2013). |
[14] |
M. Ciarletta, B. Straughan and V. Tibullo, Christov-Morro theory for non-isothermal diffusion, Nonlinear Anal. Real World Appl., 13 (2012), 1224-1228.doi: 10.1016/j.nonrwa.2011.10.014. |
[15] |
C. Currò, M. Sugiyama, H. Suzumura and G. Valenti, Weak shock waves in isotropic solids at finite temperatures up to the melting point, Continuum Mech. Thermodyn., 18 (2007), 395-409.doi: 10.1007/s00161-006-0033-6. |
[16] |
C. Currò, G. Valenti, M. Sugiyama and S. Taniguchi, Propagation of an acceleration wave in layers of isotropic solids at finite temperatures, Wave Motion, 46 (2009), 108-121.doi: 10.1016/j.wavemoti.2008.09.003. |
[17] |
M. Fabrizio, A Cahn-Hilliard model for social integration, in Modelling Social Problems and Health, (eds. J. J. Bissell, C. C. S. Caiado, S. E. Curtis, M. Goldstein and B. Straughan), Wiley, 2013. |
[18] |
M. Fabrizio, F. Franchi and B. Straughan, On a model for thermo-poroacoustic waves, Int. J. Engng. Sci., 46 (2008), 790-798.doi: 10.1016/j.ijengsci.2008.01.016. |
[19] |
M. Fabrizio and A. Morro, Electromagnetism of Continuous Media, Oxford University Press, Oxford, 2003.doi: 10.1093/acprof:oso/9780198527008.001.0001. |
[20] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 355-369.doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[21] |
M. Gentile and B. Straughan, Acceleration waves in double porosity elasticity, Int. J. Engng. Sci., 73 (2013), 10-16.doi: 10.1016/j.ijengsci.2013.07.006. |
[22] |
M. Gentile and B. Straughan, Hyperbolic diffusion with Christov-Morro theory, Math. Comput. Simulat., (2013).doi: 10.1016/j.matcom.2012.07.010. |
[23] |
A. E. Green and P. M. Naghdi, Thermoelasticity without energy-dissipation, J. Elasticity, 31 (1993), 189-208.doi: 10.1007/BF00044969. |
[24] |
H. F. Huo and N. N. Song, Global stability for a binge drinking model with two stages, Discrete Dyn. Nat. Soc., 2012 (2012), 15 pages.doi: 10.1155/2012/829386. |
[25] |
N. Hussaini and M. Winter, Travelling waves for an epidemic model with non-smooth treatment rates, J. Stat. Mech., 2010 (2010), P11019.doi: 10.1088/1742-5468/2010/11/P11019. |
[26] |
P. M. Jordan, Growth and decay of acoustic acceleration waves in Darcy-type porous media, Proc. Roy. Soc. London A, 461 (2005), 2749-2766.doi: 10.1098/rspa.2005.1477. |
[27] |
P. M. Jordan, Growth and decay of shock and acceleration waves in a traffic flow model with relaxation, Phys. D, 207 (2005), 220-229.doi: 10.1016/j.physd.2005.06.002. |
[28] |
P. M. Jordan, Finite amplitude acoustic travelling waves in a fluid that saturates a porous medium: Acceleration wave formation, Phys. Lett. A, 355 (2006), 216-221.doi: 10.1016/j.physleta.2006.02.033. |
[29] |
P. M. Jordan, Growth, decay and bifurcation of shock amplitudes under the type-II flux law, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2783-2798.doi: 10.1098/rspa.2007.1895. |
[30] |
P. M. Jordan, On the growth and decay of transverse acceleration waves on a nonlinear, externally damped string, J. Sound and Vibration, 311 (2008), 597-607.doi: 10.1016/j.jsv.2007.09.024. |
[31] |
P. M. Jordan, Some remarks on nonlinear poroacoustic phenomena, Math. Comput. Simulation, 80 (2009), 202-211.doi: 10.1016/j.matcom.2009.06.004. |
[32] |
P. M. Jordan, A note on poroacoustic travelling waves under Forchheimer's law, Phys. Lett. A, 377 (2013), 1350-1357.doi: 10.1016/j.physleta.2013.03.041. |
[33] |
P. M. Jordan and A. Puri, Qualitative results for solutions of the steady Fisher - KPP equation, Appl. Math. Lett., 15 (2002), 239-250.doi: 10.1016/S0893-9659(01)00124-0. |
[34] |
A. S. Kalula and F. Nyabadza, A theoretical model for substance abuse in the presence of treatment, S. Afr. J. Sci., 108 (2012), 96-107.doi: 10.4102/sajs.v108i3/4.654. |
[35] |
A. Kandler and J. Steele, Ecological models of language competition, Biological Theory, 3 (2008), 164-173.doi: 10.1162/biot.2008.3.2.164. |
[36] |
A. Kandler, R. Unger and J. Steele, Language shift, bilingualism and the future of Britain's Celtic languages, Phil. Trans. Royal Soc. London B, 365 (2010), 3855-3864.doi: 10.1098/rstb.2010.0051. |
[37] |
A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Étude de l'équations de la diffusion avec croissance de la quantité de matière et son application a un prolème biologique, Bull. Univ. Moskou, Ser. Int., Sec. A, 1 (1937), 1-25. |
[38] |
J. Liu and T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Letters, 24 (2011), 1685-1692.doi: 10.1016/j.aml.2011.04.019. |
[39] |
A. Marasco, On the first-order speeds in any direction of acceleration waves in prestressed second - order isotropic, compressible and homogeneous materials, Math. Comput. Modelling, 49 (2009), 1644-1652.doi: 10.1016/j.mcm.2008.07.037. |
[40] |
A. Marasco, Second - order effects on the wave propagation in elastic, isotropic, incompressible and homogeneous media, Int. J. Engng. Sci., 47 (2009), 499-511.doi: 10.1016/j.ijengsci.2008.08.009. |
[41] |
A. Marasco and A. Romano, On the acceleration waves in second - order elastic, isotropic, compressible and homogeneous materials, Math. Comput. Modelling, 49 (2009), 1504-1518.doi: 10.1016/j.mcm.2008.06.005. |
[42] |
A. Morro, Evolution equations and thermodynamic restrictions for dissipative solids, Math. Comput. Modelling, 52 (2010), 1869-1876.doi: 10.1016/j.mcm.2010.07.021. |
[43] |
G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138-141.doi: 10.1016/j.mbs.2009.01.006. |
[44] |
G. Mulone and B. Straughan, Modelling binge drinking, International Journal of Biomathematics, 5 (2012), 14 pp.doi: 10.1142/S1793524511001453. |
[45] |
F. Nyabadza, S. Mukwembi and B.G. Rodrigues, A graph theoretical perspective of a drug abuse epidemic model, Physica A - Statistical Methods and Applications, 390 (2011), 1723-1732.doi: 10.1016/j.physa.2011.01.014. |
[46] |
F. Nyabadza, J. B. H. Njagarah and R. J. Smith, Modelling the dynamics of crystal meth ('tik') abuse in the presence of drug-supply chains in South Africa, Bull. Math. Biol., 75 (2013), 24-48.doi: 10.1007/s11538-012-9790-5. |
[47] |
P. Paoletti, Acceleration waves in complex materials, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 637-659.doi: 10.3934/dcdsb.2012.17.637. |
[48] |
T. Ruggeri and M. Sugiyama, Hyperbolicity, convexity and shock waves in one-dimensional crystalline solids, J. Phys. A, 38 (2005), 4337-4347.doi: 10.1088/0305-4470/38/20/003. |
[49] |
V. D. Sharma and R. Venkatramani, Evolution of weak shocks in one dimensional planar and non - planar gas dynamics, Int. J. Non-linear Mechanics, 47 (2012), 918-926.doi: 0.1186/2251-7235-7-14. |
[50] |
B. Straughan, Stability and Wave motion in Porous Media, volume 165, Appl. Math. Sci., Springer, New York, 2008. |
[51] |
B. Straughan, Acoustic waves in a Cattaneo-Christov gas, Phys. Lett. A, 374 (2010), 2667-2669.doi: 10.1016/j.physleta.2010.04.054. |
[52] |
B. Straughan, Heat Waves, volume 177, Appl. Math. Sci., Springer, New York, 2011.doi: 10.1007/978-1-4614-0493-4. |
[53] |
B. Straughan, Gene-culture shock waves, Phys. Lett. A, 377 (2013), 2531-2534.doi: 10.1016/j.physleta.2013.07.025. |
[54] |
B. Straughan, Stability and uniqueness in double porosity elasticity, Int. J. Engng. Sci., 65 (2013), 1-8.doi: 10.1016/j.ijengsci.2013.01.001. |
[55] |
G. Valenti, C. Curro and M. Sugiyama, Acceleration waves analysed by a new continuum model of solids incorporating microscopic thermal vibrations, Continuum Mech. Thermodyn., 16 (2004), 185-198.doi: 10.1007/s00161-003-0150-4. |
[56] |
C. E. Walters, B. Straughan and J. Kendal, Modelling alcohol problems: Total recovery, Ric. Mat., 62 (2013), 1-18.doi: 10.1007/s11587-012-0138-0. |
[57] |
W. Wang, P. Fergola, S. Lombardo and G. Mulone, Mathematical models of innovation diffusion with stage structure, Appl. Math. Model., 30 (2006), 129-146.doi: 10.1016/j.apm.2005.03.011. |