Citation: |
[1] |
A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation, Physica D, 137 (2000), 49-61.doi: 10.1016/S0167-2789(99)00175-X. |
[2] |
A. Azouani, E. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, Journal of Nonlinear Analysis, 24 (2014), 277-304.doi: 10.1007/s00332-013-9189-y. |
[3] |
A. V. Babin and M. Vishik, Attractors of Evolution Partial Differential Equations, North-Holland, Amsterdam, London, New York, Tokyo, 1992. |
[4] |
H. Bessaih, E. Olson and E. S. Titi, Continuous assimilation of data with stochastic noise, preprint, arXiv:1406.1533. |
[5] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, 40, SIAM, 2002.doi: 10.1137/1.9780898719208. |
[6] |
B. Cockburn, D. A. Jones and E. S. Titi, Degrés de liberté déterminants pour équations non linéaires dissipatives, C.R. Acad. Sci.-Paris, Sér. I, 321 (1995), 563-568. |
[7] |
B. Cockburn, D. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comput., 66 (1997), 1073-1087.doi: 10.1090/S0025-5718-97-00850-8. |
[8] |
P. Constantin, Ch. Doering and E. S. Titi, Rigorous estimates of small scales in turbulent flows, Journal of Mathematical Physics, 37 (1996), 6152-6156.doi: 10.1063/1.531769. |
[9] |
P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, 1988. |
[10] |
P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, Applies Mathematical Sciences Series, Vol. 70, New York, 1989.doi: 10.1007/978-1-4612-3506-4. |
[11] |
N. H. El-Farra, A. Armaou and P. D. Christofides, Analysis and control of parabolic PDE systems with input constraints, Automatica, 39 (2003), 715-725.doi: 10.1016/S0005-1098(02)00304-7. |
[12] |
C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell and E. S. Titi, On the computation of inertial manifolds, Physics Letters A, 131 (1988), 433-436.doi: 10.1016/0375-9601(88)90295-2. |
[13] |
C. Foias, M. Jolly and R. Karavchenko, Determining forms for the Kuramoto-Sivashinsky and Lorenz equations: Analysis and computations, (in preparation). |
[14] |
C. Foias, M. Jolly, R. Kravchenko and E. S. Titi, A determining form for the 2D Navier-Stokes equations - the Fourier modes case, Journal of Mathematical Physics, 53 (2012), 115623, 30 pp. |
[15] |
C. Foias, M. Jolly, R. Karavchenko and E. S. Titi, A unified approach to determining forms for the 2D Navier-Stokes equations - the general interpolants case, Uspekhi Matematicheskikh Nauk, 69 (2014), 359-381.doi: 10.1070/RM2014v069n02ABEH004891. |
[16] |
C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001.doi: 10.1017/CBO9780511546754. |
[17] |
C. Foias, O. P. Manley, R. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations, Physica D, 9 (1983), 157-188.doi: 10.1016/0167-2789(83)90297-X. |
[18] |
C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. |
[19] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 73 (1988), 309-353.doi: 10.1016/0022-0396(88)90110-6. |
[20] |
C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, Journal of Dynamics and Differential Equations, 1 (1989), 199-244.doi: 10.1007/BF01047831. |
[21] |
C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comput., 43 (1984), 117-133.doi: 10.1090/S0025-5718-1984-0744927-9. |
[22] |
C. Foias and R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations, in Nonlinear Dynamics and Turbulence, Interaction Mech. Math. Ser., Pitman, Boston, MA, (1983), 139-155. |
[23] |
C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4 (1991), 135-153.doi: 10.1088/0951-7715/4/1/009. |
[24] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Survey and Monographs, 25, AMS, Providence, R. I., 1988. |
[25] |
M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44 (1990), 38-60.doi: 10.1016/0167-2789(90)90046-R. |
[26] |
D. Jones and E. S. Titi, On the number of determining nodes for the 2-D Navier-Stokes equations, J. Math. Anal. Appl., 168 (1992), 72-88.doi: 10.1016/0022-247X(92)90190-O. |
[27] |
D. Jones and E. S. Titi, Determining finite volume elements for the 2-D Navier-Stokes equations, Physica D, 60 (1992), 165-174.doi: 10.1016/0167-2789(92)90233-D. |
[28] |
D. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana University Mathematics Journal, 42 (1993), 875-887.doi: 10.1512/iumj.1993.42.42039. |
[29] |
I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation, Nonlinearity, 5 (1992), 997-1006.doi: 10.1088/0951-7715/5/5/001. |
[30] |
E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study, (in preparation). |
[31] |
J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global attractors, Cambridge Texts in Applied Mathematics, 2001.doi: 10.1007/978-94-010-0732-0. |
[32] |
R. Rosa, Exact finite-dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation, J. Dynamics and Diff. Eqs, 15 (2003), 61-86.doi: 10.1023/A:1026153311546. |
[33] |
R. Rosa and R. Temam, Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory in Foundations of Computational Mathematics, Selected papers of a conference held at IMPA, Rio de Janeiro, RJ, Brazil, January 1997 (Eds. F. Cucker and M. Shub), Springer-Verlag, Berlin, (1997), 382-391. |
[34] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 15, Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4757-5037-9. |
[35] |
S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi and T. J. Mountziares, Order reduction of nonlinear dynamic models for distributed reacting systems, Journal of Process Control, 10 (2000), 177-184.doi: 10.1016/S0959-1524(99)00029-3. |
[36] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Springer, New York, 1997.doi: 10.1007/978-1-4612-0645-3. |
[37] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, Springer, AMS Chelsea Publishing, Providence, RI, Theory and numerical analysis, 2001. |