Citation: |
[1] |
O. V. Abramov, High-Intensity Ultrasonics, Gordon and Breach Science Publishers, Amsterdam, 1998. |
[2] |
A. Bamberger, R. Glowinski and Q. H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM Journal on Numerical Analysis, 34 (1997), 603-639,doi: 10.1137/S0036142994261518. |
[3] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucuresti Romania and Noordhoff International Publishing, Leyden Netherlands, 1976. |
[4] |
A. Bermudez, R. Rodriguez and D. Santamarina, Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations, Journal of Computational and Applied Mathematics, 152 (2003), 17-34.doi: 10.1016/S0377-0427(02)00694-5. |
[5] |
A. C. Biazutti, On a nonlinear evolution equation and its applications, Nonlinear Analysis, 24 (1995), 1221-1234.doi: 10.1016/0362-546X(94)00193-L. |
[6] |
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991.doi: 10.1007/978-1-4612-3172-1. |
[7] |
J. C. Clements, On the existence and uniqueness of solutions of the equation $u_{t t}-\partial \sigma _i(u_{x_i}) / {\partial x_i} - D_Nu_t=f$, Canadian Mathematical Bulletin, 18 (1975), 181-187.doi: 10.4153/CMB-1975-036-1. |
[8] |
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998. |
[9] |
B. Flemisch, M. Kaltenbacher and B. I. Wohlmuth, Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids, International Journal of Numerical Methods in Engineering, 67 (2006), 1791-1810.doi: 10.1002/nme.1669. |
[10] |
M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Academic Press, New York, 1997. |
[11] |
B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations without interior damping, Applied Mathematics and Optimization, 62 (2010), 381-410.doi: 10.1007/s00245-010-9108-7. |
[12] |
B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503-523.doi: 10.3934/dcdss.2009.2.503. |
[13] |
B. Kaltenbacher, I. Lasiecka and S. Veljović, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data, J. Escher et. al. (Eds): Progress in Nonlinear Differential Equations and Their Applications, Springer Basel AG, 80 (2011), 357-387.doi: 10.1007/978-3-0348-0075-4_19. |
[14] |
G. Leoni, A First Course in Sobolev Spaces, American Mathematical Society, Providence, 2009. |
[15] |
B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl., II (2011), 763-773. |
[16] |
M. Kaltenbacher, Numerical Simulations of Mechatronic Sensors and Actuators, Springer, Berlin, 2004.doi: 10.1007/978-3-662-05358-4. |
[17] |
A. Raviart and J. M. Thomas, Primal hybrid finite element method for second order elliptic equations, Mathematics of Computation, 31 (1977), 391-413. |
[18] |
M. A. Rammaha and Z. Wilstein, Hadamard well-posedness for wave equations with $p$-Laplacian damping and supercritical sources, Advances in Differential Equations, 17 (2012), 105-150. |
[19] |
G. Teschl, Ordinary Differential Equations and Dynamical Systems, American Mathematical Society, Providence, 2012. |
[20] |
P. J. Westervelt, Parametric acoustic array, The Journal of the Acoustic Society of America, 35 (1963), 535-537.doi: 10.1121/1.1918525. |