-
Previous Article
Modeling plant nutrient uptake: Mathematical analysis and optimal control
- EECT Home
- This Issue
-
Next Article
Constrained controllability for lumped linear systems
Flux reconstruction for hyperbolic systems: Sensors and simulations
1. | TSI Team, MACS Laboratory, Moulay Ismail University, Faculty of Sciences, PB 11201, Zitoune-Meknes, Morocco, Morocco |
References:
[1] |
A. Boutoulout, H. Bourray and A. Khazari, Gradient observability for hyperbolic system, International Review of Automatic Control, 6 (2013), 274-263. |
[2] |
A. Boutoulout, H. Bourray and A. Khazari, Flux observability for hyperbolic systems, Appl. Math. Inf. Sci. Lett., 2 (2014), 13-24. |
[3] |
R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer Lecture Notes in Control and Informations, Science, Springer, New York, 1978. |
[4] |
R. F. Curtain and H. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[5] |
A. El Jai and A. J. Pritchard, Sensors and actuators in distributed systems analysis, Internat. J. Control, 46 (1987), 1139-1153.
doi: 10.1080/00207178708933956. |
[6] |
A. El Jai, M. C. Simon and E. Zerrik, Regional observability and sensor structures, Sensors and Actuators Journal, 39 (1993), 95-102. |
[7] |
A. El Jai, M. Amouroux and E. Zerrik, Regional observability of distributed systems, Int. J. Syst. Sci., 25 (1994), 301-313.
doi: 10.1080/00207729408928961. |
[8] |
A. M. Micheletti, Perturbazione Dello Spettro di un Opertore Ellitico di Tipo Variazionale, in Relazione ad una Variazione del Compo, Ricerche di matematica, in Italian, XXV, Fasc II, 1976. |
[9] |
J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Masson, Paris, 1988. |
[10] |
J. L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications. Vol. 1, Travaux et Recherches Mathmatiques, No. 17, Dunod, Paris, 1968. |
[11] |
E. Zerrik, A. Boutoulout and A. El Jai, Actuators and regional boundary controllability of parabolic systems, Int. J. Syst. Sci., 31 (2000), 73-82.
doi: 10.1080/002077200291479. |
[12] |
E. Zerrik and H. Bourray, Gradient observability for diffustion system, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139-150. |
[13] |
E. Zerrik and H. Bourray, Flux reconstruction: Sensors and simulations, Sensors and Actuators A, 109 (2003), 34-46.
doi: 10.1016/S0924-4247(03)00358-3. |
[14] |
E. Zerrik, H. Bourray and S. Benhadid, Sensors and Regional observability of the wave equation, Sensors and Actuators Journal, 138 (2007), 313-328.
doi: 10.1016/j.sna.2007.05.017. |
[15] |
E. Zerrik, H. Bourray and S. Benhadid, Sensors and boundary state reconstruction of hyperbolic systems, Int. J. Appl. Math. Comput. Sci., 20 (2010), 227-238.
doi: 10.2478/v10006-010-0016-4. |
show all references
References:
[1] |
A. Boutoulout, H. Bourray and A. Khazari, Gradient observability for hyperbolic system, International Review of Automatic Control, 6 (2013), 274-263. |
[2] |
A. Boutoulout, H. Bourray and A. Khazari, Flux observability for hyperbolic systems, Appl. Math. Inf. Sci. Lett., 2 (2014), 13-24. |
[3] |
R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer Lecture Notes in Control and Informations, Science, Springer, New York, 1978. |
[4] |
R. F. Curtain and H. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[5] |
A. El Jai and A. J. Pritchard, Sensors and actuators in distributed systems analysis, Internat. J. Control, 46 (1987), 1139-1153.
doi: 10.1080/00207178708933956. |
[6] |
A. El Jai, M. C. Simon and E. Zerrik, Regional observability and sensor structures, Sensors and Actuators Journal, 39 (1993), 95-102. |
[7] |
A. El Jai, M. Amouroux and E. Zerrik, Regional observability of distributed systems, Int. J. Syst. Sci., 25 (1994), 301-313.
doi: 10.1080/00207729408928961. |
[8] |
A. M. Micheletti, Perturbazione Dello Spettro di un Opertore Ellitico di Tipo Variazionale, in Relazione ad una Variazione del Compo, Ricerche di matematica, in Italian, XXV, Fasc II, 1976. |
[9] |
J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Masson, Paris, 1988. |
[10] |
J. L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications. Vol. 1, Travaux et Recherches Mathmatiques, No. 17, Dunod, Paris, 1968. |
[11] |
E. Zerrik, A. Boutoulout and A. El Jai, Actuators and regional boundary controllability of parabolic systems, Int. J. Syst. Sci., 31 (2000), 73-82.
doi: 10.1080/002077200291479. |
[12] |
E. Zerrik and H. Bourray, Gradient observability for diffustion system, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139-150. |
[13] |
E. Zerrik and H. Bourray, Flux reconstruction: Sensors and simulations, Sensors and Actuators A, 109 (2003), 34-46.
doi: 10.1016/S0924-4247(03)00358-3. |
[14] |
E. Zerrik, H. Bourray and S. Benhadid, Sensors and Regional observability of the wave equation, Sensors and Actuators Journal, 138 (2007), 313-328.
doi: 10.1016/j.sna.2007.05.017. |
[15] |
E. Zerrik, H. Bourray and S. Benhadid, Sensors and boundary state reconstruction of hyperbolic systems, Int. J. Appl. Math. Comput. Sci., 20 (2010), 227-238.
doi: 10.2478/v10006-010-0016-4. |
[1] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 555-566. doi: 10.3934/naco.2020055 |
[2] |
Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243 |
[3] |
Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060 |
[4] |
João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks and Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223 |
[5] |
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121 |
[6] |
Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419 |
[7] |
Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271 |
[8] |
Huey-Er Lin, Jian-Guo Liu, Wen-Qing Xu. Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure and Applied Analysis, 2004, 3 (2) : 267-290. doi: 10.3934/cpaa.2004.3.267 |
[9] |
Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405 |
[10] |
Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033 |
[11] |
Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597 |
[12] |
Felipe Ponce-Vanegas. Reconstruction of the derivative of the conductivity at the boundary. Inverse Problems and Imaging, 2020, 14 (4) : 701-718. doi: 10.3934/ipi.2020032 |
[13] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[14] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[15] |
Simon Levin, Anastasios Xepapadeas. Transboundary capital and pollution flows and the emergence of regional inequalities. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 913-922. doi: 10.3934/dcdsb.2017046 |
[16] |
Sebastian Aniţa, Vincenzo Capasso, Ana-Maria Moşneagu. Global eradication for spatially structured populations by regional control. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2511-2533. doi: 10.3934/dcdsb.2018263 |
[17] |
Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control and Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1 |
[18] |
Marc Puche, Timo Reis, Felix L. Schwenninger. Funnel control for boundary control systems. Evolution Equations and Control Theory, 2021, 10 (3) : 519-544. doi: 10.3934/eect.2020079 |
[19] |
D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3093-3111. doi: 10.3934/cpaa.2021097 |
[20] |
Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial and Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]