Citation: |
[1] |
G. Allaire, Numerical Analysis and Optimization. An Introduction to Mathematical Modelling and Numerical Simulation, Oxford Science Publications, 2007. |
[2] |
J. H. Cushman, Nutrient transport inside and outside the root rhizosphere: Generalized model, Soil Science, 138 (1984), 164-171. |
[3] |
D. Daudin and J. Sierra, Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestery system, Agriculturen Ecosystems and Environment, 126 (2008), 275-280.doi: 10.1016/j.agee.2008.02.009. |
[4] |
A. El Jai, A. J. Pritchard, M. C. Simon and E. Zerrik, Regional controllability of distributed systems, International Journal of Control, 62 (1995), 1351-1365.doi: 10.1080/00207179508921603. |
[5] |
A. El Jai, Analyse régionale des systèmes distribués, Control Optimisation and Calculus of Variation (COCV), 8 (2002), 663-692.doi: 10.1051/cocv:2002054. |
[6] | |
[7] |
S. Itoh and S. A. Barber, A numerical solution of whole plant nutrient uptake for soil-root systems with root hairs, Plant and Soil, 70 (1983), 403-413.doi: 10.1007/BF02374895. |
[8] |
R. Jalonen, P. Nygren and J. Sierra, Root exudates of a legume tree as a nitrogen source for a tropical fodder grass, Cycling in Agroecosystems, 85 (2009), 203-213.doi: 10.1007/s10705-009-9259-6. |
[9] |
R. Jalonen, P. Nygren and J. Sierra, Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks, Plant, Cell & Environment, 32 (2009), 1366-1376.doi: 10.1111/j.1365-3040.2009.02004.x. |
[10] |
S. Lenhart and J. T. Workman, Control Applied to Biological Models, Chapman & Hall, CRC Press. |
[11] |
J.-L. Lions, Optimal Control for Partial Differential Equations, Dunod, 1968. |
[12] |
J.-L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications, Dunod, Paris, 1970. |
[13] |
L. Louison, Analysis and Optimal Control of Transport-Diffusion Problems of Incomplete Data: Agroecology Application to Nutrient Uptake in Polluted Soils, PhD Thesis, (to appear). |
[14] |
P. H. Nye, The effect of the nutrient intensity and buffering power of a soil, and the absorbing power, size and root hairs of a root, on nutrient absorption by diffusion, Plant and Soil, 25 (1966), 81-105.doi: 10.1007/BF01347964. |
[15] |
P. H. Nye and F. H. C. Marriott, A theoretical study of the distribution of substances around roots resulting from simultaneous diffusion and mass flow, Plant and Soil, 3 (1969), 459-472.doi: 10.1007/BF01881971. |
[16] |
D. Picart and B.-E. Ainseba, Parameter identification in multistage population dynamics model, Nonlinear Ananlysis: Real world Applications, 12 (2011), 3315-3328.doi: 10.1016/j.nonrwa.2011.05.030. |
[17] |
M. Ptashnyk, Derivation of a macroscopic model for nutrient uptake by hairy-roots, Nonlinear Analysis: Real World Applications, 11 (2010), 4586-4596.doi: 10.1016/j.nonrwa.2008.10.063. |
[18] |
J. F. Reynolds and J. Chen, Modelling whole-plant allocation in relation to carbon and nitrogen supply: Coordination versus optimization, Plant and Soil, 185 (1996), 65-74.doi: 10.1007/BF02257565. |
[19] |
T. Roose, Mathematical Model of Plant Nutrient Uptake, College, University of Oxford, 2000. |
[20] |
T. Roose, A. C. Fowler and P. R. Darrah, A mathematical model of plant nutrient uptake, J. Math. Biology, 42 (2001), 347-360.doi: 10.1007/s002850000075. |
[21] |
A. Schnepf, T. Roose and P. Schweiger, Impact of growth and foraging strategies of arbuscular mycorrhizal fungi on plant phosphorus uptake, Plant and Soil, (2008), 85-99. |
[22] |
P. B. Tinker and P. H. Nye, Solute Movement in the Rhizosphere, Oxford University, (2000). |
[23] |
H. A. Van den Berg, Y. N. Kiseley and M. V. Orlov, Optimal allocation of building blocks between nutrient uptake systems in a microbe, J. Math Biology, 44 (2002), 276-296.doi: 10.1007/s002850100123. |