- Previous Article
- EECT Home
- This Issue
-
Next Article
A backward uniqueness result for the wave equation with absorbing boundary conditions
A note on global well-posedness and blow-up of some semilinear evolution equations
1. | University Tunis El Manar, Faculty of Sciences of Tunis, Department of Mathematics, 2092, Tunis |
References:
[1] |
S. Adachi and K. Tanaka, Trudinger type inequalities in $\mathbbR^N$ and their best exponent, Proc. Amer. Math. Society., 128 (1999), 2051-2057.
doi: 10.1090/S0002-9939-99-05180-1. |
[2] |
D. R. Adams, Sobolev Spaces, Academic Press, New York, 1975. |
[3] |
A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 7 (2004), 1-21. |
[4] |
H. Bahouri, S. Ibrahim and G. Perleman, Scattering for the critical 2-$D$ NLS with exponential growth, Diff. Int. Eq., 27 (2014), 233-268. |
[5] |
T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Metodos Matematicos, 26, Instituto de Matematica UFRJ, 1996. |
[6] |
J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575.
doi: 10.1142/S0219891609001927. |
[7] |
J. Ginibre and G. Velo, On a class of a nonlinear Schrödinger equations. II: Scattering theory, general case, J. Funct. Anal., 32 (1979), 33-71.
doi: 10.1016/0022-1236(79)90077-6. |
[8] |
J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z, 189 (1985), 487-505.
doi: 10.1007/BF01168155. |
[9] |
E. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys., 4 (1963), 195-207.
doi: 10.1063/1.1703944. |
[10] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity, Comm. Pure App. Math., 59 (2006), 1639-1658.
doi: 10.1002/cpa.20127. |
[11] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves, C. R. Acad. Sci. Paris, ser. I, 345 (2007), 133-138.
doi: 10.1016/j.crma.2007.06.008. |
[12] |
S. Ibrahim, M. Majdoub, R. Jrad and T. Saanouni, Global well posedness of a $2D$ semilinear heat equation, Bull. Belg. Math. Soc., 21 (2014), 535-551. |
[13] |
N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. D. E., 251 (2011), 1172-1194.
doi: 10.1016/j.jde.2011.02.015. |
[14] |
J. F. Lam, B. Lippman and F. Trappert, Self trapped laser beams in plasma, Phys. Fluid, 20 (1977), 1176-1179.
doi: 10.1063/1.861679. |
[15] |
H. A. Levine, Some nonexistence and stability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$, Arch. Rational Mech. Anal., 51 (1973), 371-386. |
[16] |
S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463. |
[17] |
O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth, Georgian Math. J., 17 (2010), 543-562. |
[18] |
O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of $2D$ wave equation with exponential growth, J. Partial. Diff. Eqs., 24 (2011), 361-384.
doi: 10.4208/jpde.v24.n4.7. |
[19] |
C. Miao and B. Zhang, The Cauchy problem for semilinear parabolic equations in Besov spaces, Houston J. Math., 30 (2004), 829-878. |
[20] |
J. Moser, A sharp form of an inequality of N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1092. |
[21] |
M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487.
doi: 10.1007/PL00004737. |
[22] |
M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order, Journal of Functional Analysis, 155 (1998), 364-380.
doi: 10.1006/jfan.1997.3236. |
[23] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[24] |
L. P. Pitaevski, Vortex lines in an imperfect Bose gas, J. Experimental Theoret. Phys., 13 (1961), p.646; Translation in Soviet Phys. JETP, 40 (1961), 451-454. |
[25] |
B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $\mathbbR^2$, J. Funct. Anal, 219 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[26] |
T. Saanouni, Global well-posedness and scattering of a $2D$ Schrödinger equation with exponential growth, Bull. Belg. Math. Soc. Simon Stevin., 17 (2010), 441-462. |
[27] |
T. Saanouni, Decay of solutions to a $2D$ Schrödinger equation with exponential growth, J. P. D. E., 24 (2011), 37-54. |
[28] |
T. Saanouni, Remarks on the semilinear Schrödinger equation, J. Math. Anal. Appl., 400 (2013), 331-344.
doi: 10.1016/j.jmaa.2012.11.037. |
[29] |
T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space, Math. Meth. Appl. Sci., 33 (2010), 1046-1058.
doi: 10.1002/mma.1237. |
[30] |
T. Saanouni, Global well-posedness and instability of a $2D$ Schrödinger equation with harmonic potential in the conformal space, Journal of Abstract Differential Equations and Applications, 4 (2013), 23-42. |
[31] |
T. Saanouni, Blowing-up semilinear wave equation with exponential nonlinearity in two space dimensions, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), 365-372.
doi: 10.1007/s12044-013-0132-9. |
[32] |
T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions, Math. Meth. Appl. Sci., 37 (2014), 488-495.
doi: 10.1002/mma.2804. |
[33] |
T. Saanouni, A blowing up wave equation with exponential type nonlinearity and arbitrary positive energy, J. Math. Anal. Appl., 421 (2015), 444-452.
doi: 10.1016/j.jmaa.2014.07.033. |
[34] |
W. Strauss, Nonlinear Wave Equations, CBMS Regional Conference Series in Math., 73, Amer. Math. Soc., Providence, RI, 1989. |
[35] |
M. Struwe, The critical nonlinear wave equation in $2$ space dimensions, J. European Math. Soc., 15 (2013), 1805-1823.
doi: 10.4171/JEMS/404. |
[36] |
M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions, Math. Ann. Vol., 350 (2011), 707-719.
doi: 10.1007/s00208-010-0567-6. |
[37] |
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse, Applied Mathematical Sciences. Vol. 139, Springer-Verlag, New York, 1999. |
[38] |
N. S. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484. |
[39] |
S. R. S. Varadhan, Lectures on Diffusion Problems and Partial Differential Equations, Courant Institute of Mathematical Sciences, New York, 1989. |
show all references
References:
[1] |
S. Adachi and K. Tanaka, Trudinger type inequalities in $\mathbbR^N$ and their best exponent, Proc. Amer. Math. Society., 128 (1999), 2051-2057.
doi: 10.1090/S0002-9939-99-05180-1. |
[2] |
D. R. Adams, Sobolev Spaces, Academic Press, New York, 1975. |
[3] |
A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 7 (2004), 1-21. |
[4] |
H. Bahouri, S. Ibrahim and G. Perleman, Scattering for the critical 2-$D$ NLS with exponential growth, Diff. Int. Eq., 27 (2014), 233-268. |
[5] |
T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Metodos Matematicos, 26, Instituto de Matematica UFRJ, 1996. |
[6] |
J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575.
doi: 10.1142/S0219891609001927. |
[7] |
J. Ginibre and G. Velo, On a class of a nonlinear Schrödinger equations. II: Scattering theory, general case, J. Funct. Anal., 32 (1979), 33-71.
doi: 10.1016/0022-1236(79)90077-6. |
[8] |
J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z, 189 (1985), 487-505.
doi: 10.1007/BF01168155. |
[9] |
E. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys., 4 (1963), 195-207.
doi: 10.1063/1.1703944. |
[10] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity, Comm. Pure App. Math., 59 (2006), 1639-1658.
doi: 10.1002/cpa.20127. |
[11] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves, C. R. Acad. Sci. Paris, ser. I, 345 (2007), 133-138.
doi: 10.1016/j.crma.2007.06.008. |
[12] |
S. Ibrahim, M. Majdoub, R. Jrad and T. Saanouni, Global well posedness of a $2D$ semilinear heat equation, Bull. Belg. Math. Soc., 21 (2014), 535-551. |
[13] |
N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. D. E., 251 (2011), 1172-1194.
doi: 10.1016/j.jde.2011.02.015. |
[14] |
J. F. Lam, B. Lippman and F. Trappert, Self trapped laser beams in plasma, Phys. Fluid, 20 (1977), 1176-1179.
doi: 10.1063/1.861679. |
[15] |
H. A. Levine, Some nonexistence and stability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$, Arch. Rational Mech. Anal., 51 (1973), 371-386. |
[16] |
S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463. |
[17] |
O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth, Georgian Math. J., 17 (2010), 543-562. |
[18] |
O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of $2D$ wave equation with exponential growth, J. Partial. Diff. Eqs., 24 (2011), 361-384.
doi: 10.4208/jpde.v24.n4.7. |
[19] |
C. Miao and B. Zhang, The Cauchy problem for semilinear parabolic equations in Besov spaces, Houston J. Math., 30 (2004), 829-878. |
[20] |
J. Moser, A sharp form of an inequality of N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1092. |
[21] |
M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487.
doi: 10.1007/PL00004737. |
[22] |
M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order, Journal of Functional Analysis, 155 (1998), 364-380.
doi: 10.1006/jfan.1997.3236. |
[23] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[24] |
L. P. Pitaevski, Vortex lines in an imperfect Bose gas, J. Experimental Theoret. Phys., 13 (1961), p.646; Translation in Soviet Phys. JETP, 40 (1961), 451-454. |
[25] |
B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $\mathbbR^2$, J. Funct. Anal, 219 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[26] |
T. Saanouni, Global well-posedness and scattering of a $2D$ Schrödinger equation with exponential growth, Bull. Belg. Math. Soc. Simon Stevin., 17 (2010), 441-462. |
[27] |
T. Saanouni, Decay of solutions to a $2D$ Schrödinger equation with exponential growth, J. P. D. E., 24 (2011), 37-54. |
[28] |
T. Saanouni, Remarks on the semilinear Schrödinger equation, J. Math. Anal. Appl., 400 (2013), 331-344.
doi: 10.1016/j.jmaa.2012.11.037. |
[29] |
T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space, Math. Meth. Appl. Sci., 33 (2010), 1046-1058.
doi: 10.1002/mma.1237. |
[30] |
T. Saanouni, Global well-posedness and instability of a $2D$ Schrödinger equation with harmonic potential in the conformal space, Journal of Abstract Differential Equations and Applications, 4 (2013), 23-42. |
[31] |
T. Saanouni, Blowing-up semilinear wave equation with exponential nonlinearity in two space dimensions, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), 365-372.
doi: 10.1007/s12044-013-0132-9. |
[32] |
T. Saanouni, Global well-posedness of a damped Schrödinger equation in two space dimensions, Math. Meth. Appl. Sci., 37 (2014), 488-495.
doi: 10.1002/mma.2804. |
[33] |
T. Saanouni, A blowing up wave equation with exponential type nonlinearity and arbitrary positive energy, J. Math. Anal. Appl., 421 (2015), 444-452.
doi: 10.1016/j.jmaa.2014.07.033. |
[34] |
W. Strauss, Nonlinear Wave Equations, CBMS Regional Conference Series in Math., 73, Amer. Math. Soc., Providence, RI, 1989. |
[35] |
M. Struwe, The critical nonlinear wave equation in $2$ space dimensions, J. European Math. Soc., 15 (2013), 1805-1823.
doi: 10.4171/JEMS/404. |
[36] |
M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions, Math. Ann. Vol., 350 (2011), 707-719.
doi: 10.1007/s00208-010-0567-6. |
[37] |
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse, Applied Mathematical Sciences. Vol. 139, Springer-Verlag, New York, 1999. |
[38] |
N. S. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484. |
[39] |
S. R. S. Varadhan, Lectures on Diffusion Problems and Partial Differential Equations, Courant Institute of Mathematical Sciences, New York, 1989. |
[1] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[2] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[3] |
Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 |
[4] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[5] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[6] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[7] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[8] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[9] |
Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 |
[10] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[11] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032 |
[12] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[13] |
Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 |
[14] |
Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1221-1232. doi: 10.3934/dcdss.2021093 |
[15] |
Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235 |
[16] |
Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091 |
[17] |
Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016 |
[18] |
Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395 |
[19] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
[20] |
Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]