December  2015, 4(4): 373-389. doi: 10.3934/eect.2015.4.373

Approximate controllability of abstract nonsimple thermoelastic problem

1. 

Ecole Nationale d'Ingénieurs de Bizerte, Université de Carthage, BP66, Campus Universitaire Menzel Abderrahman 7035

2. 

Faculté des Sciences de Bizerte, 7021 Zarzouna, Université de Carthage, Tunisia

Received  April 2015 Revised  October 2015 Published  November 2015

In this paper, an abstract nonsimple thermoelastic problem involving higher order gradients of displacement is considered with Dirichlet boundary conditions. We prove that the linear operator of the proposed system generates a strongly continuous semigroup which decays exponentially to zero. The optimal decay rate is determined explicitly by the physical parameters of the problem. Then we show the approximate controllability of the considered problem.
Citation: Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations and Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373
References:
[1]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory, J. Math. Analysis Appl., 402 (2013), 745-757. doi: 10.1016/j.jmaa.2013.01.059.

[2]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem, Appl. Anal., 92 (2013), 1816-1828. doi: 10.1080/00036811.2012.702341.

[3]

M. Aouadi and T. Moulahi, Asymptotic analysis of a nonsimple thermoelastic rod, Accepted in Disc. Cont. Dyn. Syst., (2015).

[4]

G. Avalos, Null controllability of von Karman thermoelastic plates under the clamped or free mechanical boundary conditions, J. Math. Anal. Appl., 318 (2006), 410-432. doi: 10.1016/j.jmaa.2005.05.040.

[5]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1996), 1-28.

[6]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182. doi: 10.1137/S0036141096300823.

[7]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathematics, 137, Springer, New York, NY, USA, 1992. doi: 10.1007/b97238.

[8]

A. Benabdallah and I. Lasiecka, Exponential decay rates for a full von Karman system of dynamic thermoelasticity, J. Diff. Equat., 160 (2000), 51-93. doi: 10.1006/jdeq.1999.3656.

[9]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293, John Wiley & Sons, Inc., New York, 1993.

[10]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 1978.

[11]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer, New York, NY, USA, 1995. doi: 10.1007/978-1-4612-4224-6.

[12]

H. D. Fernàndez Sare, J. E. Munoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars, Int. J. Eng. Sci., 48 (2010), 1233-1241. doi: 10.1016/j.ijengsci.2010.04.014.

[13]

J. A. Gawinecki and J. Lazuka, Global solution on Cauchy problem in nonlinear non-simple thermoelastic materials, Proc. Appl. Math. Mech., 6 (2006), 371-372. doi: 10.1002/pamm.200610167.

[14]

S. W. Hansen, Boundary control of a one-dimensional linear thermoelastic rod, SIAM J. Control Optim., 32 (1994), 1052-1074. doi: 10.1137/S0363012991222607.

[15]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167 (1992), 429-442. doi: 10.1016/0022-247X(92)90217-2.

[16]

D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/978-1-4020-2310-1.

[17]

H. Kolakowski and J. Lazuka, The Cauchy problem for the system of partial differential equations describing nonsimple thermoelasticity, Appl. Math., 35 (2008), 97-105. doi: 10.4064/am35-1-6.

[18]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Diff. Equat., 3 (1998), 387-416.

[19]

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity, Archives Rat. Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[20]

H. Leiva, Existence of bounded solutions of a second order system with dissipation, J. Math. Anal. Appl., 237 (1999), 288-302. doi: 10.1006/jmaa.1999.6480.

[21]

H. Leiva and H. Zambrano, Rank condition for the controllability of a linear time-varying system, Int. J. Control, 72 (1999), 929-931. doi: 10.1080/002071799220669.

[22]

H. Leiva, A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation, IMA J. Math. Cont. Inf., 20 (2003), 393-410. doi: 10.1093/imamci/20.4.393.

[23]

J.-L. Lions, Contrôlabilité, Exacte Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Rech. Math. Appl. 8, Masson, Paris, 1988.

[24]

W. J. Liu, Partial exact controllability and exponential stability of the higher dimensional linear thermoelasticity, ESAIM Contrôle Optim. C-alc. Var., 3 (1998), 23-48. doi: 10.1051/cocv:1998101.

[25]

K. Narukawa, Boundary value control of thermoelastic systems, Hiroshima Math. J., 13 (1983), 227-272.

[26]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, J. Math. Anal. Appl., 363 (2010), 19-28. doi: 10.1016/j.jmaa.2009.07.055.

[27]

R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials, Z. Angew. Math. Mech., 83 (2003), 172-180. doi: 10.1002/zamm.200310017.

[28]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley and Sons. New York. 1980.

[29]

L. de Teresa and E. Zuazua, Controllability for the linear system of thermoelastic plates, Adv. Diff. Equat., 1 (1996), 369-402.

[30]

E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures. Appl., 74 (1995), 291-315.

show all references

References:
[1]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory, J. Math. Analysis Appl., 402 (2013), 745-757. doi: 10.1016/j.jmaa.2013.01.059.

[2]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem, Appl. Anal., 92 (2013), 1816-1828. doi: 10.1080/00036811.2012.702341.

[3]

M. Aouadi and T. Moulahi, Asymptotic analysis of a nonsimple thermoelastic rod, Accepted in Disc. Cont. Dyn. Syst., (2015).

[4]

G. Avalos, Null controllability of von Karman thermoelastic plates under the clamped or free mechanical boundary conditions, J. Math. Anal. Appl., 318 (2006), 410-432. doi: 10.1016/j.jmaa.2005.05.040.

[5]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1996), 1-28.

[6]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182. doi: 10.1137/S0036141096300823.

[7]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathematics, 137, Springer, New York, NY, USA, 1992. doi: 10.1007/b97238.

[8]

A. Benabdallah and I. Lasiecka, Exponential decay rates for a full von Karman system of dynamic thermoelasticity, J. Diff. Equat., 160 (2000), 51-93. doi: 10.1006/jdeq.1999.3656.

[9]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293, John Wiley & Sons, Inc., New York, 1993.

[10]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 1978.

[11]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer, New York, NY, USA, 1995. doi: 10.1007/978-1-4612-4224-6.

[12]

H. D. Fernàndez Sare, J. E. Munoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars, Int. J. Eng. Sci., 48 (2010), 1233-1241. doi: 10.1016/j.ijengsci.2010.04.014.

[13]

J. A. Gawinecki and J. Lazuka, Global solution on Cauchy problem in nonlinear non-simple thermoelastic materials, Proc. Appl. Math. Mech., 6 (2006), 371-372. doi: 10.1002/pamm.200610167.

[14]

S. W. Hansen, Boundary control of a one-dimensional linear thermoelastic rod, SIAM J. Control Optim., 32 (1994), 1052-1074. doi: 10.1137/S0363012991222607.

[15]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167 (1992), 429-442. doi: 10.1016/0022-247X(92)90217-2.

[16]

D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/978-1-4020-2310-1.

[17]

H. Kolakowski and J. Lazuka, The Cauchy problem for the system of partial differential equations describing nonsimple thermoelasticity, Appl. Math., 35 (2008), 97-105. doi: 10.4064/am35-1-6.

[18]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Diff. Equat., 3 (1998), 387-416.

[19]

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity, Archives Rat. Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[20]

H. Leiva, Existence of bounded solutions of a second order system with dissipation, J. Math. Anal. Appl., 237 (1999), 288-302. doi: 10.1006/jmaa.1999.6480.

[21]

H. Leiva and H. Zambrano, Rank condition for the controllability of a linear time-varying system, Int. J. Control, 72 (1999), 929-931. doi: 10.1080/002071799220669.

[22]

H. Leiva, A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation, IMA J. Math. Cont. Inf., 20 (2003), 393-410. doi: 10.1093/imamci/20.4.393.

[23]

J.-L. Lions, Contrôlabilité, Exacte Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Rech. Math. Appl. 8, Masson, Paris, 1988.

[24]

W. J. Liu, Partial exact controllability and exponential stability of the higher dimensional linear thermoelasticity, ESAIM Contrôle Optim. C-alc. Var., 3 (1998), 23-48. doi: 10.1051/cocv:1998101.

[25]

K. Narukawa, Boundary value control of thermoelastic systems, Hiroshima Math. J., 13 (1983), 227-272.

[26]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, J. Math. Anal. Appl., 363 (2010), 19-28. doi: 10.1016/j.jmaa.2009.07.055.

[27]

R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials, Z. Angew. Math. Mech., 83 (2003), 172-180. doi: 10.1002/zamm.200310017.

[28]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley and Sons. New York. 1980.

[29]

L. de Teresa and E. Zuazua, Controllability for the linear system of thermoelastic plates, Adv. Diff. Equat., 1 (1996), 369-402.

[30]

E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures. Appl., 74 (1995), 291-315.

[1]

Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1015-1043. doi: 10.3934/dcdss.2021147

[2]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[3]

Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007

[4]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[5]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[6]

Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure and Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011

[7]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations and Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[8]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[9]

Shuai Liu, Yuzhu Wang. Optimal time-decay rate of global classical solutions to the generalized compressible Oldroyd-B model. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021041

[10]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002

[11]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[12]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[13]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[14]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[15]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[16]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[17]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[18]

Ebenezer Bonyah, Fatmawati. An analysis of tuberculosis model with exponential decay law operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2101-2117. doi: 10.3934/dcdss.2021057

[19]

Jian-Wen Sun, Seonghak Kim. Exponential decay for quasilinear parabolic equations in any dimension. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021280

[20]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]