Citation: |
[1] |
H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56.doi: 10.1002/mana.3211860102. |
[2] |
H. Amann, Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1: Function Spaces, Jindrich Necas Center for Mathematical Modeling Lecture Notes, 6, Matfyzpress, Prague, 2009. |
[3] |
H. Amann, Linear and Quasilinear Parabolic Problems, Volume I, Abstract Linear Theory, Monographs in Mathematics, 89, Birkhäuser Verlag, Basel, 1995.doi: 10.1007/978-3-0348-9221-6. |
[4] |
S. N. Antontsev, C. R. Gonsalves and A. M. Meirmanov, Local existence of classical solutions to the well-posed Helle-Shaw problem, Port. Math. (N.S.), 59 (2002), 435-452. |
[5] |
J.-H. Bailly, Local existence of classical solutions to first-order parabolic equations describing free boundaries, Nonlinear Anal., 32 (1998), 583-599.doi: 10.1016/S0362-546X(97)00504-X. |
[6] |
B. V. Basaliy, I. I. Danilyuk and S. P. Degtyarev, Classical solvability of the multidimensional nonstationary filtration problem with free boundary (Russian. English summary), Dokl. Akad. Nauk Ukr. SSR, (1987), 3-7. |
[7] |
B. V. Bazaliy and S. P. Degtyarev, On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompresssible fluid, Math. USSR Sb., 60 (1988), 1-17. |
[8] |
B. V. Bazaliy and S. P. Degtyarev, Solvability of a problem with an unknown boundary between the domains of a parabolic and an elliptic equation, Ukr. Math. J., 41 (1989), 1155-1160.doi: 10.1007/BF01057253. |
[9] |
B. V. Bazaliy and S. P. Degtyarev, Stefan problem with kinetic and classical conditions at the free boundary, Ukr. Math. J., 44 (1992), 139-148.doi: 10.1007/BF01061735. |
[10] |
G. I. Bizhanova and V. A. Solonnikov, On problems with free boundaries for second-order parabolic equations, St. Petersburg Mathematical Journal, 12 (2001), 949-981. |
[11] |
G. I. Bizhanova and V. A. Solonnikov, On some model problems for second order parabolic equations with time derivative in the boundary conditions, St. Petersbg. Math. J., 6 (1995), 1151-1166. |
[12] |
Y.-K. Cho and D. Kim, A fourier multiplier theorem on the Besov-Lipschits spaces, Korean J. Math., 16 (2008), 85-90. |
[13] |
P. Constantin, D. Cyrdoba and F. Gancedo, On the global existence for the Muskat problem, J. Fur. Math. Soc. (JEMS), 15 (2013), 201-227.doi: 10.4171/JEMS/360. |
[14] |
P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem, Nonlinearity, 6 (1993), 393-415.doi: 10.1088/0951-7715/6/3/004. |
[15] |
A. Cyrdoba, D. Cyrdoba and F. Gancedo, Porous media: The Muskat problem in three dimensions, Anal. PDE., 6 (1993), 447-497.doi: 10.2140/apde.2013.6.447. |
[16] |
S. P. Degtyarev, Classical solvability of multidimensional two-phase Stefan problem for degenerate parabolic equations and Schauder's estimates for a degenerate parabolic problem with dynamic boundary conditions, Nonlinear Differential Equations and Applications NoDEA, 22 (2015), 185-237.doi: 10.1007/s00030-014-0280-3. |
[17] |
S. P. Degtyarev, The existence of a smooth interface in the evolutionary elliptic Muskat-Verigin problem with nonlinear source, (Russian) Ukrainian Mathematical Bulletin, 7 (2010), 301-330. |
[18] |
S. P. Degtyarev, The existence of a smooth interface in the evolutionary elliptic Muskat-Verigin problem with nonlinear source, arXiv:1307.0109v2. |
[19] |
R. Denk, J. Prüss and R. Zacher, Maximal $L_p$ - regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.doi: 10.1016/j.jfa.2008.07.012. |
[20] |
R. Denk and R. Volevich, A new class of parabolic problems connected with Newton's polygon, Discrete Cont. Dyn. Syst., Dynamical Systems and Differential Equations, Proceedings of the 6th AIMS International Conference, suppl., (2007), 294-303. |
[21] |
R. Denk and L. R. Volevich, Parabolic boundary value problems connected with Newton's polygon and some problems of crystallization, J. Evol. Equ., 8 (2008), 523-556.doi: 10.1007/s00028-008-0392-5. |
[22] |
R. Denk and M. Kaip, General Parabolic Mixed Order Systems in $L_p$ and Applications, Operator Theory: Advances and Applications, 239, Birkhäuser/Springer, 2013.doi: 10.1007/978-3-319-02000-6. |
[23] |
P. Dintelmann, Classes of Fourier multipliers and Besov-Nikolskij spaces, Math. Nachr., 173 (1995), 115-130.doi: 10.1002/mana.19951730108. |
[24] |
H. Dong, Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal., 205 (2012), 119-149.doi: 10.1007/s00205-012-0501-z. |
[25] |
H. Dong and S. Kim, Partial Scauder estimates for second-order elliptic and parabolic equations, Calc. Var. Partial Differential Equations, 40 (2011), 481-500.doi: 10.1007/s00526-010-0348-9. |
[26] |
J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.doi: 10.1080/03605309308820976. |
[27] |
J. Escher and B.-V. Matioc, On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results, Z. Anal. Anwend., 30 (2011), 193-218.doi: 10.4171/ZAA/1431. |
[28] |
J. Escher and G. Simonett, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 (1997), 1028-1047.doi: 10.1137/S0036141095291919. |
[29] |
J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension, Adv. Differential Equations, 2 (1997), 619-642. |
[30] |
P. Fife, Schauder estimates under incomplete Hölder continuity assumptions, Pacific J. Math., 13 (1963), 511-550.doi: 10.2140/pjm.1963.13.511. |
[31] |
A. Friedman, B. Hu and J. J. L. Velazquez, A Stefan problem for a protocell model with symmetry-breaking bifurcations of analitic solutions, Interfaces Free Bound., 3 (2001), 143-199.doi: 10.4171/IFB/37. |
[32] |
A. Friedman and J. J. L. Velazquez, A free boundary problem associated with crystallization of polymers in a temperature field, Indiana Univ. Math. J., 50 (2001), 1609-1649.doi: 10.1512/iumj.2001.50.2118. |
[33] |
E. Frolova, Solvability in Sobolev spaces of a problem for a second order parabolic equation with time derivative in the boundary condition, Portugal Math., 56 (1999), 419-441. |
[34] |
C. G. Gal and H. Wu, Asymptotic behavior of Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation, Discrete Contin. Dyn. Syst., 22 (2008), 1041-1063.doi: 10.3934/dcds.2008.22.1041. |
[35] |
S. Gindikin and L. R. Volevich, The Method of Newton's Polyhedron in the Theory of Partial Differential Equations, Mathematics and its Applications, 86, Kluwer Academic Publishers Group, Dordrecht, 1992.doi: 10.1007/978-94-011-1802-6. |
[36] |
M. Girardi and L. Weis, Operator-valued Fourier multiplier theorems on Besov spaces, Math. Nachr., 251 (2003), 34-51.doi: 10.1002/mana.200310029. |
[37] |
G. R. Goldstein and A. Miranville, A Cahn-Hilliard-Gurtin model with dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S., 6 (2013), 387-400.doi: 10.3934/dcdss.2013.6.387. |
[38] |
K. K. Golovkin, On equivalent normalizations of fractional spaces, in Automatic Programming, Numerical Methods and Functional Analysis, Trudy Mat. Inst. Steklov., 66, Acad. Sci. USSR, Moscow-Leningrad, 1962, 364-383. |
[39] |
K. K. Golovkin and V. A. Solonnikov, Bounds for integral operators in translation-invariant norms, in Boundary Value Problems of Mathematical Physics, Part 1, Collection of Articles, Trudy Mat. Inst. Steklov. Nauka, 70, Moscow-Leningrad, 1964, 47-58. |
[40] |
K. K. Golovkin and V. A. Solonnikov, Estimates of integral operators in translation-invariant norms. II, in Boundary Value Problems of Mathematical Physics. Part 4, Trudy Mat. Inst. Steklov. 92, 1966, 5-30. |
[41] |
K. K. Golovkin and V. A. Solonnikov, On some estimates of convolutions, in Boundary-Value Problems of Mathematical Physics and Related Problems of Function Theory. Part 2, Zap. Nauchn. Sem. LOMI, "Nauka", 7, Leningrad. Otdel., Leningrad, 1968, 6-86. |
[42] |
B. Grec and E. V. Radkevich, Newton's polygon method and the local solvability of free boundary problems, Journal of Mathematical Sciences, 143 (2007), 3253-3292.doi: 10.1007/s10958-007-0208-0. |
[43] |
D. Guidetti, The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are Hölder continuous with respect to space variables, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7 (1996), 161-168. |
[44] |
D. Guidetti, Optimal regularity for mixed parabolic problems in spaces of functions which are Hölder continuous with respect to space variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 763-790. |
[45] |
V. N. Gusakov and S. P. Degtyarev, Existence of a smooth solution in a filtration problem, Ukr. Math. J., 41 (1989), 1027-1032.doi: 10.1007/BF01056273. |
[46] |
L. Hörmander, The Analysis of Linear Partial Differential Operators. I, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, 1983.doi: 10.1007/978-3-642-96750-4. |
[47] |
S. D. Ivasishen, Green's matrices of boundary value problems for Petrovskii parabolic systems of general form. I, Mathematics of the USSR-Sbornik, 42 (1982), 93-144. |
[48] |
S. D. Ivasishen, Green's matrices of boundary value problems for Petrovskii parabolic systems of general form. II, Mathematics of the USSR-Sbornik, 42 (1982), 461-498. |
[49] |
A. I. Komech, Linear partial differential equations with constant coefficients, in Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients, Encyclopaedia of Mathematical Sciences, 31, Springer, 2013, 121-255.doi: 10.1007/978-3-642-57876-2_2. |
[50] |
J. Kovats, Real analytic solutions of parabolic equations with time-measurable coefficients, Proc. Amer. Math. Soc., 130 (2002), 1055-1064.doi: 10.1090/S0002-9939-01-06163-9. |
[51] |
S. N. Kruzkov, A. Castro and M. M. Lopez, Schauder-type estimates and existence theorems for the solution of basic problems for linear and nonlinear parabolic equations, Sov. Math. Dokl., 16 (1975), 60-64. |
[52] |
N. Krylov, The Calderon-Zygmund theorem and parabolic equations in $L_p(\mathbbR,C^{2+\alpha})$- spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), 799-820. |
[53] |
N. V. Krylov, Parabolic equations in $L_p$-spaces with mixed norms, St. Petersburg Mathematical Journal, 14 (2003), 603-614. |
[54] |
N. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients, Comm. Partial Differential Equations, 35 (2010), 1-22.doi: 10.1080/03605300903424700. |
[55] |
Y. Kusaka and A. Tani, On the classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow, Math. Models Methods Appl. Sci., 12 (2002), 365-391.doi: 10.1142/S0218202502001696. |
[56] |
Y. Kusaka, On a free boundary problem describing the phase transition in an incompressible viscous fluid, Interfaces Free Bound., 12 (2010), 157-185.doi: 10.4171/IFB/231. |
[57] |
O. A. Ladyzhenskaya, A theorem on multiplicators in nonhomogeneous holder spaces and some of its applications, Journal of Mathematical Sciences (New York), 115 (2003), 2792-2802.doi: 10.1023/A:1023373920221. |
[58] |
O. A. Ladyzhenskaya, On multiplicators in Hölder spaces with nonhomogeneous metric, Methods. Appl. Anal., 7 (2000), 465-472. |
[59] |
G. M. Lieberman, Intermediate Schauder theory for second order parabolic equations. IV. Time irregularity and regularity, Differential Integral Equations, 5 (1992), 1219-1236. |
[60] |
L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time, SIAM J. Math. Anal., 32 (2000), 588-615.doi: 10.1137/S0036141098342842. |
[61] |
L. Lorenzi, Optimal Hölder regularity for nonautonomous Kolmogorov equations, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 169-191.doi: 10.3934/dcdss.2011.4.169. |
[62] |
A. Lunardi, Maximal space regularity in nonhomogeneous initial-boundary value parabolic problem, Numer. Funct. Anal. Optim., 10 (1989), 323-349.doi: 10.1080/01630568908816306. |
[63] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser Verlag, Basel, 1995.doi: 10.1007/978-3-0348-9234-6. |
[64] |
A. M. Meirmanov, On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. USSR Sb., 40 (1981), 157-178. |
[65] |
A. Meirmanov, The Muskat problem for a viscoelastic filtration, Interfaces Free Bound., 13 (2011), 463-484.doi: 10.4171/IFB/268. |
[66] |
I. Sh. Mogilevskiĭ and V. A. Solonnikov, Solvability of a noncoercive initial-boundary value problem for the Stokes system in Hölder classes of functions (the half-space case), Z. Anal. Anwendungen, 8 (1989), 329-347. |
[67] |
J. Prüss, R. Racke and S. Zheng, Maximal regularity and a symptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Anali di Matematica, 185 (2006), 627-648.doi: 10.1007/s10231-005-0175-3. |
[68] |
J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodinamically consistent Strfan problems, Arch. Ration. Mech. Anal., 207 (2013), 611-667.doi: 10.1007/s00205-012-0571-y. |
[69] |
R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differential Equations, 8 (2003), 83-110. |
[70] |
E. V. Radkevich, On conditions for the existence of a classical solution of the modified Stefan problem (Gibbs-Thomson low), Russ. Ac. Sc. Sb. Math., 75 (1993), 221-246.doi: 10.1070/SM1993v075n01ABEH003381. |
[71] |
E. V. Radkevich, On the spectrum of the pencil in the Verigin-Muskat problem, Russ. Ac. Sc. Sb. Math., 80 (1995), 33-73.doi: 10.1070/SM1995v080n01ABEH003513. |
[72] |
J. F. Rodrigues and V. A. Solonnikov, On a parabolic system with time derivative in the boundary conditions and related free boundary problems, Math. Ann., 315 (1999), 61-95.doi: 10.1007/s002080050318. |
[73] |
E. Sinestrari, On the solutions of the first boundary value problem for the linear parabolic equations, Proc. Roy. Soc. Edinburgh, Sect.A., 108 (1988), 339-355.doi: 10.1017/S0308210500014712. |
[74] |
V. A. Solonnikov, Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations, in Boundary Value Problems of Mathematical Physics. Part 1, Collection of Articles, Trudy Mat. Inst. Steklov. Nauka, 70, Moscow-Leningrad, 1964, 213-317. |
[75] |
V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form, in Proceedings of the Steklov Institute of Mathematics, 83, 1965, 3-163. |
[76] |
V. A. Solonnikov, Estimates of solutions to some noncoercive initial-boundary value problems with the help of a theorem about multipliers in Laplace-Fourier integrals, (Russian) in Functional and Numerical Methods of Mathematical Physics, Naukova Dumka, Kyjiv, 1988, 220-228. |
[77] |
V. A. Solonnikov, Estimates of solutions of the second initial-boundary problem for the Stokes system in the spaces of functions with Holder continuous derivatives with respect to spatial variables, Journal of Mathematical Sciences (New York), 109 (2002), 1997-2017.doi: 10.1023/A:1014456711451. |
[78] |
G. Tian and X.-J. Wang, Partial regularity for elliptic equatios, Discrete Contin. Dyn. Syst., 28 (2010), 899-913.doi: 10.3934/dcds.2010.28.899. |
[79] |
H. Triebel, Theory of Function Spaces II, Modern Birkhauser Classics, Birkhäuser, Basel, 2010. |
[80] |
J. L. Vázquez and E. Vitillaro, On the Laplace equation with dynamical boundary conditions of reactive-diffusive type, J. Math. Anal. Appl., 354 (2009), 674-688.doi: 10.1016/j.jmaa.2009.01.023. |
[81] |
J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive type, Comm. Partial Differential Equations, 33 (2008), 561-612.doi: 10.1080/03605300801970960. |
[82] |
H. Wu, Convergence to equilibrium for a Cahn-Hilliard model with Wentzell boundary condition, Asymptot. Anal., 54 (2007), 71-92. |
[83] |
D. Yang, W. Yuan and C. Zhuo, Musielak-Orlicz Besov-type and Triebel-Lizorkin-type spaces, Rev. Mat. Complut., 27 (2014), 93-157.doi: 10.1007/s13163-013-0120-8. |
[84] |
F. Yi, Local classical solution of Muskat free boundary problem, J. Partial Differential Equations., 9 (1996), 84-96. |
[85] |
F. Yi, Global classical solution of Muskat free boundary problem, J. Math. Anal. Appl., 288 (2003), 442-461.doi: 10.1016/j.jmaa.2003.09.003. |