Citation: |
[1] |
P. R. Agarwal, M. Belmekki and M. Benchohra, Existence results for semilinear functional differential inclusions involving Riemann-Liouville fractional derivative, Dynamics of Continuous, Discrete Impulsive Systems, Series A: Mathematical Analysis, 17 (2010), 347-361. |
[2] |
I. Benedetti, V. Obukhovskii and V. Taddei, Controllability for systems governed by semilinear evolution inclusions without compactness, Nonlinear Differential Equations and Applications, 21 (2014), 795-812.doi: 10.1007/s00030-014-0267-0. |
[3] |
I. Benedetti, L. Malaguti and V. Taddei, Semilinear evolution equations in abstract spaces and applications, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 44 (2012), 371-388. |
[4] |
S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly valued functions, Annals of Mathematics, 39 (1938), 913-944.doi: 10.2307/1968472. |
[5] |
H. Brezis, Analyse Fonctionelle, Théorie et Applications, Masson Editeur, Paris, 1983. |
[6] |
K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, 2010.doi: 10.1007/978-3-642-14574-2. |
[7] |
N. Dunford and J. T. Schwartz, Linear Operators, John Wiley and Sons, Inc., New York, 1988. |
[8] |
S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.doi: 10.1016/j.jde.2003.12.002. |
[9] |
I. Ekeland and R. Teman, Convex Anaysis and Variational Problems, North Holland, Amsterdam, 1976. |
[10] |
K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000. |
[11] |
M. Fečkan, J. R. Wang and Y. Zhou, Controllability of fractional evolution equations of Sobolev type via characteristic solution, Journal of Optimization Theory and Applications, 156 (2013), 79-95.doi: 10.1007/s10957-012-0174-7. |
[12] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7 Walter de Gruyter, Berlin, 2001.doi: 10.1515/9783110870893. |
[13] |
L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. |
[14] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[15] |
M. Krasnoschok and N. Vasylyeva, On a non classical fractional boundary-value problem for the Laplace operator, Journal of Differential Equations, 257 (2014), 1814-1839.doi: 10.1016/j.jde.2014.05.022. |
[16] |
Z. Liu, J. Lv and R. Sakthivel, Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces, IMA Journal of Mathematical Control and Information, 31 (2014), 363-383.doi: 10.1093/imamci/dnt015. |
[17] |
J. A. Machado, C. Ravichandran, M. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory and Applications, 66 (2013), 1-16.doi: 10.1186/1687-1812-2013-66. |
[18] |
D. O'Regan, Fixed point theorems for weakly sequentially closed maps, Archivum Mathematicum, 36 (2000), 61-70. |
[19] |
B. J. Pettis, On the integration in vector spaces, Transactions of the American Mathematical Society, 44 (1938), 277-304.doi: 10.1090/S0002-9947-1938-1501970-8. |
[20] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[21] |
R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity, Journal of Differential Equations, 255 (2013), 3284-3304.doi: 10.1016/j.jde.2013.07.035. |
[22] |
L. Schwartz, Cours d'Analyse I, 2nd ed. Hermann, Paris, 1981. |
[23] |
V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, 2010.doi: 10.1007/978-3-642-14003-7. |
[24] |
J. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Analysis: Real World Analysis, 12 (2011), 3642-3653.doi: 10.1016/j.nonrwa.2011.06.021. |
[25] |
R. N. Wang, D. H. Chen and Ti-Jun Xiao, Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252 (2012), 202-235.doi: 10.1016/j.jde.2011.08.048. |
[26] |
R. N. Wang, Q. M. Xiang and P. X. Zhu, Existence and approximate controllability for systems governed by fractional delay evolution inclusions, Optimization, 63 (2014), 1191-1204.doi: 10.1080/02331934.2014.917303. |
[27] |
V. Vijayakumar, C. Ravichandran and R. Murugesu, Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay, Surveys in Mathematics and its Applications 9 (2014), 117-129. |
[28] |
V. Vijayakumar, C. Ravichandran and R. Murugesu, Nonlocal controllability of mixed Volterra-Fredholm type fractional semilinear integro-differential inclusions in Banach spaces, Dynamics of Continuous, Discrete Impulsive Systems, Series B: Applications & Algorithms, 20 (2013), 485-502. |
[29] |
L. Zhang and Y. Zhou, Fractional Cauchy problems with almost sectorial operators, Applied Mathematics and Computation, 257 (2015), 145-157.doi: 10.1016/j.amc.2014.07.024. |
[30] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.doi: 10.1142/9069. |
[31] |
Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier & Academic Press, 2015. |
[32] |
Y. Zhou, L. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations, Journal of Integral Equations and Applications, 25 (2013), 557-586.doi: 10.1216/JIE-2013-25-4-557. |
[33] |
Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Analysis, 11 (2010), 4465-4475.doi: 10.1016/j.nonrwa.2010.05.029. |