• Previous Article
    Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller
  • EECT Home
  • This Issue
  • Next Article
    Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions
March  2015, 4(1): 69-87. doi: 10.3934/eect.2015.4.69

The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids

1. 

Department of Mathematics, TU Darmstadt, Schlossgartenstr, 7, D-64289 Darmstadt, Germany

2. 

Department of Pure and Applied Mathematics, Graduate School of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Received  December 2014 Revised  January 2015 Published  February 2015

Consider the system of equations describing the motion of a rigid body immersed in a viscous, compressible fluid within the barotropic regime. It is shown that this system admits a unique, local strong solution within the $L^p$-setting.
Citation: Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations & Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Grundlehren, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J. Bemelmanns, G. P. Galdi and M. Kyed, On steady motion of a coupled system solid-liquid, Mem. Amer. Math. Soc., 226 (2013), vi+89 pp. doi: 10.1090/S0065-9266-2013-00678-8.  Google Scholar

[3]

M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 777-813. doi: 10.1016/j.anihpc.2008.02.004.  Google Scholar

[4]

C. Conca, J. San Martín and M. Tucsnak, Existence of solutions for equations modeling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042. doi: 10.1080/03605300008821540.  Google Scholar

[5]

P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math. J., 58 (2008), 961-992. doi: 10.1007/s10587-008-0063-2.  Google Scholar

[6]

P. Cumsille and M. Tucsnak, Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle, Math. Methods Appl. Sci., 29 (2006), 595-623. doi: 10.1002/mma.702.  Google Scholar

[7]

R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier Multiplier and Problems of Elliptic and Parabolic Type, Memoirs Amer. Math. Soc., No. 788, 2003. Google Scholar

[8]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p$-$L^q$ estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224. doi: 10.1007/s00209-007-0120-9.  Google Scholar

[9]

B. Desjardins and M. Esteban, Existence of weak solutions for rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71. doi: 10.1007/s002050050136.  Google Scholar

[10]

B. Desjardins and M. Esteban, On weak solutions for fluid rigid structure interaction: Compressible and incompressible models, Comm. Partial Differential Equations, 25 (2000), 1399-1413. doi: 10.1080/03605300008821553.  Google Scholar

[11]

B. Ducomet and S. Nečsová, On the motion of rigid bodies in a compressible viscous fluid under the action of gravitation forces, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1193-1213. doi: 10.3934/dcdss.2013.6.1193.  Google Scholar

[12]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.  Google Scholar

[13]

E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal., 167 (2003), 281-308. doi: 10.1007/s00205-002-0242-5.  Google Scholar

[14]

E. Feireisl, M. Hillairet and S. Necasova, On the motion of several rigid bodies in an incompressible non-Newtonian fluid, Nonlinearity, 21 (2008), 1349-1366. doi: 10.1088/0951-7715/21/6/012.  Google Scholar

[15]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, in Handbook of Mathematical Fluid Dynamics. Vol. I (in S. J. Friedlander and D. Serre), North-Holland, Amsterdam, 2002, 653-791.  Google Scholar

[16]

G. P. Galdi and A. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-stokes liquid under the action of prescribed forces and torques, in Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N. Y.), 1, Kluwer, New York, 2002, 121-144. doi: 10.1007/978-1-4615-0777-2_8.  Google Scholar

[17]

M. Geissert, K. Götze and M. Hieber, $L^p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc., 365 (2013), 1393-1439. doi: 10.1090/S0002-9947-2012-05652-2.  Google Scholar

[18]

K. Götze, Maximal $L^p$-regularity for 2D fluid-solid interaction problem, Operator Theory: Advances and Applications, 221 (2012), 373-384. doi: 10.1007/978-3-0348-0297-0_19.  Google Scholar

[19]

M. D. Gunzburger, H. -C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266. doi: 10.1007/PL00000954.  Google Scholar

[20]

K.-H. Hoffmann and V. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., 9 (1999), 633-648.  Google Scholar

[21]

A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 24 (1977), 303-319.  Google Scholar

[22]

M. Murata, On a maximal $L_p$-$L_q$ approach to the compressible viscous fluid flow with slip boundary condition, Nonlinear Anal., 106 (2014), 86-109. doi: 10.1016/j.na.2014.04.012.  Google Scholar

[23]

A. Novotny and I. Straskraba, Introduction to the Mathematical Theory of Compressible Flows, Oxford University Press, Oxford, 2004.  Google Scholar

[24]

J. San Martín, J. Scheid, T. Takahashi and M. Tucsnak, An initial and boundary value problem modeling of fish-like swimming, Arch. Ration. Mech. Anal., 188 (2008), 429-455. doi: 10.1007/s00205-007-0092-2.  Google Scholar

[25]

D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., 4 (1987), 99-110. doi: 10.1007/BF03167757.  Google Scholar

[26]

Y. Shibata, On the global well-posedness of some free boundary problem for compressible barotoropic viscous fluid flow,, Preprint., ().   Google Scholar

[27]

P. E. Sobolevskii, Fractional powers of coercively positive sums of operators, Dokl. Akad. Nauk SSSR., 225 (1975), 1271-1274.  Google Scholar

[28]

G. Ströhmer, About a certain class of parabolic-hyperbolic systems of differential equation, Analysis, 9 (1989), 1-39. doi: 10.1524/anly.1989.9.12.1.  Google Scholar

[29]

T. Takahashi, Analysis of strong solutions for equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, 8 (2003), 1499-1532.  Google Scholar

[30]

T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6 (2004), 53-77. doi: 10.1007/s00021-003-0083-4.  Google Scholar

[31]

H. F. Weinberger, On the steady fall of a body in a Navier-Stokes fluid, Proc. Symp. Pure Math., 23 (1973), 421-439.  Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Grundlehren, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J. Bemelmanns, G. P. Galdi and M. Kyed, On steady motion of a coupled system solid-liquid, Mem. Amer. Math. Soc., 226 (2013), vi+89 pp. doi: 10.1090/S0065-9266-2013-00678-8.  Google Scholar

[3]

M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 777-813. doi: 10.1016/j.anihpc.2008.02.004.  Google Scholar

[4]

C. Conca, J. San Martín and M. Tucsnak, Existence of solutions for equations modeling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042. doi: 10.1080/03605300008821540.  Google Scholar

[5]

P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math. J., 58 (2008), 961-992. doi: 10.1007/s10587-008-0063-2.  Google Scholar

[6]

P. Cumsille and M. Tucsnak, Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle, Math. Methods Appl. Sci., 29 (2006), 595-623. doi: 10.1002/mma.702.  Google Scholar

[7]

R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier Multiplier and Problems of Elliptic and Parabolic Type, Memoirs Amer. Math. Soc., No. 788, 2003. Google Scholar

[8]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p$-$L^q$ estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224. doi: 10.1007/s00209-007-0120-9.  Google Scholar

[9]

B. Desjardins and M. Esteban, Existence of weak solutions for rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71. doi: 10.1007/s002050050136.  Google Scholar

[10]

B. Desjardins and M. Esteban, On weak solutions for fluid rigid structure interaction: Compressible and incompressible models, Comm. Partial Differential Equations, 25 (2000), 1399-1413. doi: 10.1080/03605300008821553.  Google Scholar

[11]

B. Ducomet and S. Nečsová, On the motion of rigid bodies in a compressible viscous fluid under the action of gravitation forces, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1193-1213. doi: 10.3934/dcdss.2013.6.1193.  Google Scholar

[12]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.  Google Scholar

[13]

E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal., 167 (2003), 281-308. doi: 10.1007/s00205-002-0242-5.  Google Scholar

[14]

E. Feireisl, M. Hillairet and S. Necasova, On the motion of several rigid bodies in an incompressible non-Newtonian fluid, Nonlinearity, 21 (2008), 1349-1366. doi: 10.1088/0951-7715/21/6/012.  Google Scholar

[15]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, in Handbook of Mathematical Fluid Dynamics. Vol. I (in S. J. Friedlander and D. Serre), North-Holland, Amsterdam, 2002, 653-791.  Google Scholar

[16]

G. P. Galdi and A. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-stokes liquid under the action of prescribed forces and torques, in Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N. Y.), 1, Kluwer, New York, 2002, 121-144. doi: 10.1007/978-1-4615-0777-2_8.  Google Scholar

[17]

M. Geissert, K. Götze and M. Hieber, $L^p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc., 365 (2013), 1393-1439. doi: 10.1090/S0002-9947-2012-05652-2.  Google Scholar

[18]

K. Götze, Maximal $L^p$-regularity for 2D fluid-solid interaction problem, Operator Theory: Advances and Applications, 221 (2012), 373-384. doi: 10.1007/978-3-0348-0297-0_19.  Google Scholar

[19]

M. D. Gunzburger, H. -C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266. doi: 10.1007/PL00000954.  Google Scholar

[20]

K.-H. Hoffmann and V. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., 9 (1999), 633-648.  Google Scholar

[21]

A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 24 (1977), 303-319.  Google Scholar

[22]

M. Murata, On a maximal $L_p$-$L_q$ approach to the compressible viscous fluid flow with slip boundary condition, Nonlinear Anal., 106 (2014), 86-109. doi: 10.1016/j.na.2014.04.012.  Google Scholar

[23]

A. Novotny and I. Straskraba, Introduction to the Mathematical Theory of Compressible Flows, Oxford University Press, Oxford, 2004.  Google Scholar

[24]

J. San Martín, J. Scheid, T. Takahashi and M. Tucsnak, An initial and boundary value problem modeling of fish-like swimming, Arch. Ration. Mech. Anal., 188 (2008), 429-455. doi: 10.1007/s00205-007-0092-2.  Google Scholar

[25]

D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., 4 (1987), 99-110. doi: 10.1007/BF03167757.  Google Scholar

[26]

Y. Shibata, On the global well-posedness of some free boundary problem for compressible barotoropic viscous fluid flow,, Preprint., ().   Google Scholar

[27]

P. E. Sobolevskii, Fractional powers of coercively positive sums of operators, Dokl. Akad. Nauk SSSR., 225 (1975), 1271-1274.  Google Scholar

[28]

G. Ströhmer, About a certain class of parabolic-hyperbolic systems of differential equation, Analysis, 9 (1989), 1-39. doi: 10.1524/anly.1989.9.12.1.  Google Scholar

[29]

T. Takahashi, Analysis of strong solutions for equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, 8 (2003), 1499-1532.  Google Scholar

[30]

T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6 (2004), 53-77. doi: 10.1007/s00021-003-0083-4.  Google Scholar

[31]

H. F. Weinberger, On the steady fall of a body in a Navier-Stokes fluid, Proc. Symp. Pure Math., 23 (1973), 421-439.  Google Scholar

[1]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[2]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[3]

Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193

[4]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[5]

Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control & Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050

[6]

Shijin Ding, Bingyuan Huang, Xiaoyan Hou. Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 277-300. doi: 10.3934/dcdsb.2021042

[7]

Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123

[8]

Hugo Beirão da Veiga. Turbulence models, $p-$fluid flows, and $W^{2, L}$ regularity of solutions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 769-783. doi: 10.3934/cpaa.2009.8.769

[9]

Fuyi Xu, Meiling Chi, Lishan Liu, Yonghong Wu. On the well-posedness and decay rates of strong solutions to a multi-dimensional non-conservative viscous compressible two-fluid system. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2515-2559. doi: 10.3934/dcds.2020140

[10]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[11]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[12]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[13]

Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems & Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83

[14]

Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173

[15]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[16]

Fabien Caubet, Marc Dambrine, Djalil Kateb, Chahnaz Zakia Timimoun. A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Problems & Imaging, 2013, 7 (1) : 123-157. doi: 10.3934/ipi.2013.7.123

[17]

Lorena Bociu, Jean-Paul Zolésio. Sensitivity analysis for a free boundary fluid-elasticity interaction. Evolution Equations & Control Theory, 2013, 2 (1) : 55-79. doi: 10.3934/eect.2013.2.55

[18]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[19]

Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184

[20]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]