Citation: |
[1] |
E. Arias, V. Hernández, J. Ibanes and J. Peinado, A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques, Procedia Computer Science, 1 (2010), 2569-2577. |
[2] |
G. Avalos and I. Lasiecka, Differential Riccati equation for the active control of a problem in structural acoustics, J. Optim. Theory Appl., 91 (1996), 695-728.doi: 10.1007/BF02190128. |
[3] |
H. T. Banks, R. J. Silcox and R. C. Smith, The modeling and control of acoustic/structure interaction problems via piezoceramic actuators: 2-d numerical examples, ASME J. Vibration Acoustics, 116 (1994), 386-396.doi: 10.1115/1.2930440. |
[4] |
H. T. Banks, R. C. Smith and Y. Wang, The modeling of piezoceramic patch interactions with shells, plates and beams, Quart. Appl. Math, 53 (1995), 353-381. |
[5] |
P. Benner, P. Ezzatti, H. Mena, E. S. Quintana-Ortí and A. Remón, Solving matrix equations on multi-core and many-core architectures, Algorithms, 6 (2013), 857-870.doi: 10.3390/a6040857. |
[6] |
P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, MPI Magdeburg Preprint MPIMD/12-13, 2012, Available from: http://www2.mpi-magdeburg.mpg.de/preprints/2012/MPIMD12-13.pdf. |
[7] |
P. Benner and H. Mena, Rosenbrock methods for solving differential Riccati equations, IEEE Transactions on Automatic Control, 58 (2013), 2950-2956.doi: 10.1109/TAC.2013.2258495. |
[8] |
F. E. Benth and T. G. Theting, Some regularity results for the stochastic pressure equation of Wick-type, Stochastic Analysis and Applications, 20 (2002), 1191-1223.doi: 10.1081/SAP-120015830. |
[9] |
J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM J. Control. Optim., 14 (1976), 419-444.doi: 10.1137/0314028. |
[10] |
J.-M. Bismut, Contrôle des systmes linéaires quadratiques: Applications de l'intégrale stochastique, in Séminaire de Probabilités XII, Lecture Notes in Math., 649 (1978), Springer, Berlin, 180-264. |
[11] |
K. R. Dahl, S.-E. A. Mohammed, B. Øksendal and E. E. Røse, Optimal control of systems with noisy memory and BSDEs with Malliavin derivatives, preprint, arXiv:1403.4034v3. |
[12] |
G. Da Prato, Direct solution of a Riccati equation arising in stochastic control theory, Appl. Math. Optim., 11 (1984), 191-208.doi: 10.1007/BF01442178. |
[13] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, $2^{nd}$ edition, Encyclopedia of Mathematics and its Applications, 152. Cambridge University Press, Cambridge, 2014.doi: 978-1-107-05584-1. |
[14] |
F. Flandoli, Direct solution of a Riccati equation arising in a stochastic control problem with control and observation on the boundary, Appl. Math. Optim, 14 (1986), 107-129.doi: 10.1007/BF01442231. |
[15] |
H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, $2^{nd}$ edition, Stochastic Modelling and Applied Probability 25, Springer, New York, 2006. |
[16] |
J. Fisher and R. Bhattacharya, On stochastic LQR design and polynomial chaos, in American Control Conference, Seattle, WA, (2008), 95-100.doi: 10.1109/ACC.2008.4586473. |
[17] |
J. Fisher and R. Bhattacharya, Stability analysis of stochastic systems using polynomial chaos, In American Control Conference, Seattle, WA, (2008), 4250-4255.doi: 10.1109/ACC.2008.4587161. |
[18] |
R. Ghanem and P. D. Spanos, Polynomial chaos in stochastic finite elements, Journal of Applied Mechanics, 57 (1990), 197-202.doi: 10.1115/1.2888303. |
[19] |
M. Grothaus, Y. G. Kondratiev and G. F. Us, Wick calculus for regular generalized stochastic functionals, Random Oper. Stochastic Equations, 7 (1999), 263-290.doi: 10.1515/rose.1999.7.3.263. |
[20] |
G. Guatteri and G. Tessitore, On the backward stochastic Riccati equation in infinite dimensions, SIAM J. Control Optim., 44 (2005), 159-194.doi: 10.1137/S0363012903425507. |
[21] |
G. Guatteri and G. Tessitore, Backward stochastic Riccati equations and infinite horizon L-Q optimal control with infinite dimensional state space and random coefficients, Appl. Math. Optim., 57 (2008), 207-235.doi: 10.1007/s00245-007-9020-y. |
[22] |
C. Hafizoglu, Linear Quadratic Boundary{/Point Control of Stochastic Partial Differential Equation Systems with Unbounded Coefficients}, Ph.D thesis, University of Virginia, 2006. |
[23] |
C. Hafizoglu, I. Lasiecka, T. Levajković, H. Mena and A. Tuffaha, The stochastic linear quadratic control problem with singular estimates, preprint, 2015. |
[24] |
T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, White Noise. An Infinite-Dimensional Calculus, Mathematics and its Applications, 253, Kluwer Academic Publishers Group, Dordrecht, 1993.doi: 10.1007/978-94-017-3680-0. |
[25] |
H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic Partial Differential Equations. A modeling, White Noise Functional Approach, $2^{nd}$ edition, Springer, 2010.doi: 10.1007/978-0-387-89488-1. |
[26] |
F. S. Hover and M. S. Triantafyllou, Application of polynomial chaos in stability and control, Automatica, 42 (2006), 789-795.doi: 10.1016/j.automatica.2006.01.010. |
[27] |
A. Ichikawa, Dynamic programming approach to stochastic evolution equations, SIAM J. Control. Optim., 17 (1979), 152-174.doi: 10.1137/0317012. |
[28] |
M. Kohlmann and S. Tang, New developments in backward stochastic Riccati equations and their applications, In: Mathematical Finance (Konstanz 2000), Trends Math. Birkhäuser, Basel, 194-214, 2001. |
[29] |
M. Kohlmann and S. Tang, Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging, Stoch. Process. Appl., 97 (2002), 255-288.doi: 10.1016/S0304-4149(01)00133-8. |
[30] |
M. Kohlmann and S. Tang, Multidimensional backward stochastic Riccati equations and applications, SIAM J. Control. Optim., 41 (2003), 1696-1721.doi: 10.1137/S0363012900378760. |
[31] |
M. Kohlmann and X. Y. Zhou, Relationship between backward stochastic differential equations and stochastic controls: A linear-quadratic approach, SIAM J. Control. Optim., 38 (2000), 1392-1407.doi: 10.1137/S036301299834973X. |
[32] |
H. J. Kushner, Optimal stochastic control, IRE Trans. Auto. Control, 7 (1962), 120-122.doi: 10.1109/TAC.1962.1105490. |
[33] |
N. Lang, H. Mena and J. Saak, On the benefits of the LDL factorization for large-scale differential matrix equation solvers, Linear Algebra and its Applications, 480 (2015), 44-71.doi: 10.1016/j.laa.2015.04.006. |
[34] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications 74, Cambridge University Press, 2000. |
[35] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories II. Abstract Hyperbolic-Like Systems over a Finite Time Horizon, Encyclopedia of Mathematics and its Applications 75, Cambridge University Press, 2000.doi: 10.1017/CBO9780511574801.002. |
[36] |
I. Lasiecka and R. Triggiani, Optimal control and differential Riccati equations under singular estimates for $e^{At}B$ in the absence of analyticity, Advances in Dynamics and Control, Nonlinear Syst. Aviat. Aerosp. Aeronaut. Astronaut., 2, CRC Press (2004), 270-307. |
[37] |
C. Lebdzek and R. Triggiani, Optimal regularity and optimal control of a thermoelastic structural acoustic model with point control and clamped boundary conditions, Control Cybernet, 38 (2009), 1461-1499. |
[38] |
T. Levajković and H. Mena, On deterministic and stochastic linear quadratic control problem, Current Trends in Analysis and Its Applications, Trends in Mathematics, Research Perspectives, Springer International Publishing Switzerland (2015), 315-322. |
[39] |
T. Levajković, H. Mena and A. Tuffaha, A Numerical approximation framework for the stochastic linear quadratic regulator on Hilbert spaces, Appl. Math. Optim., (2016).doi: 10.1007/s00245-016-9339-3. |
[40] |
T. Levajković, S. Pilipović and D. Seleši, The stochastic Dirichlet problem driven by the Ornstein-Uhlenbeck operator$:$ Approach by the Fredholm alternative for chaos expansions, Stoch. Anal. Appl., 29 (2011), 317-331.doi: 10.1080/07362994.2011.548998. |
[41] |
T. Levajković and D. Seleši, Chaos expansion methods for stochastic differential equations involving the Malliavin derivative Part I, Publ. Inst. Math. (Beograd) (N.S.), 90 (2011), 65-84.doi: 10.2298/PIM1104065L. |
[42] |
T. Levajković, S. Pilipović and D. Seleši, Fundamental equations with higher order Malliavin operators, Stochastics: An International Journal of Probability and Stochastic Processes, 88 (2016), 106-127.doi: 10.1080/17442508.2015.1036434. |
[43] |
T. Levajković, S. Pilipović and D. Seleši, Chaos expansion methods in Malliavin calculus: A survey of recent results, Novi Sad J. Math., 45 (2015), 45-103. |
[44] |
T. Levajković, S. Pilipović, D. Seleši and M. Žigić, Stochastic evolution equations with multiplicative noise, Electronic Journal of Probability, 20 (2015), 23pp.doi: 10.1214/EJP.v20-3696. |
[45] |
S. Lototsky and B. Rozovskii, Stochastic differential equations: A Wiener chaos approach, From stochastic calculus to mathematical finance, (eds. Yu. Kabanov et al.), Springer Berlin (2006), 433-506.doi: 10.1007/978-3-540-30788-4_23. |
[46] |
E. A. Kalpinelli, N. E. Frangos and A. N. Yannacopoulos, Numerical methods for hyperbolic SPDEs: A Wiener chaos approach, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 606-633.doi: 10.1007/s40072-013-0019-x. |
[47] |
H. Matthies, Stochastic finite elements: Computational approaches to stochastic partial differential equations, Z. Angew. Math. Mech., 88 (2008), 849-873.doi: 10.1002/zamm.200800095. |
[48] |
R. Mikulevicius and B. Rozovskii, On unbiased stochastic Navier-Stokes equations, Probab. Theory Related Fields, 154 (2012), 787-834.doi: 10.1007/s00440-011-0384-1. |
[49] |
A. Monti, F. Ponci and T. Lovett, A polynomial chaos theory approach to the control design of a power converter, In Power Electronics Specialists Conference, PESC 04, IEEE 35th Annual, (6) (2004), Aachen, Germany, 4809-4813.doi: 10.1109/PESC.2004.1354850. |
[50] |
D. Nualart, The Malliavin Calculus and Related Topics, $2^{nd}$ edition, Probability and its Applications, Springer-Verlag, Berlin, 2006. |
[51] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York Inc, 1983.doi: 10.1007/978-1-4612-5561-1. |
[52] |
S. Peng, Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control. Optim., 30 (1992), 284-304.doi: 10.1137/0330018. |
[53] |
S. Peng, Open problems on backward stochastic differential equations, in Control of Distributed Parameter and Stochastic Systems, (Hangzhou 1998), Kluwer Academic, Boston, 1999, 265-273. |
[54] |
S. Pilipović and D. Seleši, Expansion theorems for generalized random processes, Wick products and applications to stochastic differential equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10 (2007), 79-110.doi: 10.1142/S0219025707002634. |
[55] |
A. Sandu, C. Sandu, B. J. Chan and M. Ahmadian, Control mechanical systems using a parameterized spectral decomposition approach, in Proceedings of the IMECE04, ASME International Sixth Annual Symposium on Advanced Vehicle Technologies, Anaheim, CA, November 2004. |
[56] |
W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lecture Notes in Statistics 146, Springer Verlag, 2000.doi: 10.1007/978-1-4612-1170-9. |
[57] |
B. A. Templeton, A Polynomial Chaos Approach to Control Design, Ph.D Thesis, Virginia Polytechnic University, 2009. |
[58] |
D. Venturi, X. Wan, R. Mikulevicius, B. L. Rozovskii and G. E. Karniadakis, Wick - Malliavin approximation to nonlinear stochastic partial differential equations: Analysis and simulations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20130001, 20pp.doi: 10.1098/rspa.2013.0001. |
[59] |
N. Wiener, The homogeneous chaos, American Journal of Mathematics, 60 (1938), 897-936.doi: 10.2307/2371268. |
[60] |
W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control, 6 (1968), 312-326.doi: 10.1137/0306023. |
[61] |
W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM J. Control, 6 (1968), 681-697.doi: 10.1137/0306044. |
[62] |
D. Xiu and G. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), 619-644.doi: 10.1137/S1064827501387826. |
[63] |
J. Yong and X. Y. Zhou, Stochastic Controls - Hamiltonian Systems and HJB Equations, Applications of Mathematics, Stochastic Modelling and Applied Probability 43, Springer, New York, 1999.doi: 10.1007/978-1-4612-1466-3. |