Advanced Search
Article Contents
Article Contents

The energy conservation for weak solutions to the relativistic Nordström-Vlasov system

Abstract Related Papers Cited by
  • We study the Cauchy problem of the relativistic Nordström-Vlasov system. Under some additional conditions, total energy for weak solutions with BV scalar field are shown to be conserved.
    Mathematics Subject Classification: 83D05, 85A05, 35Q75, 35Q83.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity, Inc. NY, Oxford University Press, 2000.


    F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157 (2001), 75-90.doi: 10.1007/PL00004237.


    F. Bouchut, F. Golse and C. Pallard, Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system, Rev. Mat.Iberoamericana., 20 (2004), 865-892.doi: 10.4171/RMI/409.


    S. Calogero and G. Rein, Global weak solutions to the Nordström-Vlasov system, J. Differential Equations., 204 (2004), 323-338.doi: 10.1016/j.jde.2004.02.011.


    S. Calogero, Global classical solutions to the 3D Nordström-Vlasov system, Commun. Math. Phys., 266 (2006), 343-353.doi: 10.1007/s00220-006-0029-x.


    S. Calogero, Spherically symmetric steady states of galactic dynamics in scalar gravity, Class. Quantum Grav., 20 (2003), 1729-1741.doi: 10.1088/0264-9381/20/9/310.


    S. Calogero and G. Rein, On classical solutions of the Nordström-Vlasov system, Comm. Partial Diff. Eqs., 28 (2003), 1863-1885.doi: 10.1081/PDE-120025488.


    R. J. Diperna and P.-L. Lions, Global weak solutions of Vlasov-Mxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.doi: 10.1002/cpa.3160420603.


    R. J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Amer. Math. Soc., 98 (1989), 511-547.doi: 10.1007/BF01393835.


    L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.


    S. Friedrich, Global small solutions of the Vlasov-Nordström system, preprint, arXiv:math/0407023v1.


    P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.doi: 10.1007/BF01232273.


    G. Loeper, Uniqueness of the solution to Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.doi: 10.1016/j.matpur.2006.01.005.


    E. Miot, A uniqueness criterion for unbounded solutions to the Vlaosv-Poisson system, arXiv:1409.6988v1.


    C. Pallard, On global smooth solutions to the 3D Vlasov-Nordström system, Ann. I. H. Poincaré, 23 (2006), 85-96.doi: 10.1016/j.anihpc.2005.02.001.


    G. Rein, Global weak solutions to the relativistic Vlasov-Maxwell system revisted, Comm. Math. Sci., 2 (2004), 145-158.doi: 10.4310/CMS.2004.v2.n2.a1.


    G. Rein, Collisionless kinetic equation from astrophysics-the Vlasov-Poisson system, in: Handbook of Differential Equations: Evolutionary Equations, {Elsevier}, 3 (2007), 383-476.doi: 10.1016/S1874-5717(07)80008-9.


    R. Sospedra-Alfonso, On the energy conservation by weak solutions of the relativistic Vlasov-Maxwell system, Comm. Math. Sci., 8 (2010), 901-908.doi: 10.4310/CMS.2010.v8.n4.a6.


    S. L. Shapiro and S. A. Teukolsky, Scalar gravitation: A laboratory for numerical relativity, Phys. Rev. D., 47 (1993), 1529-1540.doi: 10.1103/PhysRevD.47.1529.

  • 加载中

Article Metrics

HTML views() PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint