\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Energy decay rates for solutions of the wave equation with linear damping in exterior domain

Abstract Related Papers Cited by
  • In this paper we study the behavior of the energy and the $L^{2}$ norm of solutions of the wave equation with localized linear damping in exterior domain. Let $u$ be a solution of the wave system with initial data $\left( u_{0},u_{1}\right) $. We assume that the damper is positive at infinity then under the Geometric Control Condition of Bardos et al [5] (1992), we prove that:
        1. If $(u_{0},u_{1}) $ belong to $H_{0}^{1}( \Omega) \times L^{2}( \Omega ) ,$ then the total energy $ E_{u}(t) \leq C_{0}(1+t) ^{-1}I_{0}$ and $\Vert u(t) \Vert _{L^{2}}^{2}\leq C_{0}I_{0},$ where \begin{equation*} I_{0}=\left\Vert u_{0}\right\Vert _{H^{1}}^{2}+\left\Vert u_{1}\right\Vert _{L^{2}}^{2}. \end{equation*}    2. If the initial data $\left( u_{0},u_{1}\right) $ belong to $ H_{0}^{1}\left( \Omega \right) \times L^{2}\left( \Omega \right) $ and verifies \begin{equation*} \left\Vert d\left( \cdot \right) \left( u_{1}+au_{0}\right) \right\Vert _{L^{2}}<+\infty , \end{equation*} then the total energy $E_{u}\left( t\right) \leq C_{2}\left( 1+t\right) ^{-2}I_{1}$ and $\left\Vert u\left( t\right) \right\Vert _{L^{2}}^{2} \leq C_{2} \left( 1+t\right) ^{-1}I_{1},$ where \begin{equation*} I_{1}=\left\Vert u_{0}\right\Vert _{H^{1}}^{2}+\left\Vert u_{1}\right\Vert _{L^{2}}^{2}+\left\Vert d\left( \cdot \right) \left( u_{1}+au_{0}\right) \right\Vert _{L^{2}}^{2} \end{equation*} and \begin{equation*} d\left( x\right) =\left\{ \begin{array}{lc} \left\vert x\right\vert & d\geq 3, \\ \left\vert x\right\vert \ln \left( B\left\vert x\right\vert \right) & d=2, \end{array} \right. . \end{equation*} with $B$ $\underset{x\in \Omega }{\inf } \left\vert x\right\vert \geq 2$.
    Mathematics Subject Classification: Primary: 35L05, 35B40; Secondary: 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth, Communications in Partial Differential Equations, 36 (2011), 797-818.doi: 10.1080/03605302.2010.534684.

    [2]

    L. Aloui and M. Khenissi, Stabilisation de l'équation des ondes dans un domaine extérieur, Rev. Mat. Iberoamerica, 18 (2002), 1-16.doi: 10.4171/RMI/309.

    [3]

    J. Bae and M. Nakao, Energy decay for the wave equation with boundary and localized dissipations in exterior domains, Math. Nachr., 278 (2005), 771-783.doi: 10.1002/mana.200310271.

    [4]

    A. Bchatnia and M. Daoulatli, Local energy decay for the wave equation with a nonlinear time dependent damping, Appl. Anal., 92 (2013), 2288-2308.doi: 10.1080/00036811.2012.734375.

    [5]

    C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optimization, 30 (1992), 1024-1065.doi: 10.1137/0330055.

    [6]

    N. Burq, Mesures semi-classiques et mesures de défaut, (French) [Semiclassical measures and defect measures] Séminaire Bourbaki, Astérisque, 1996/97 (1997), 167-195.

    [7]

    N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 325 (1997), 749-752.doi: 10.1016/S0764-4442(97)80053-5.

    [8]

    W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation, Funkcial. Ekvac., 38 (1995), 545-568.

    [9]

    M. Daoulatli, Local energy decay for the nonlinear dissipative wave equation in an exterior domain, Port. Math., 64 (2007), 39-65.doi: 10.4171/PM/1775.

    [10]

    M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain, SIAM J.Control Optim., 48 (2010), 5254-5275.doi: 10.1137/090757332.

    [11]

    M. Daoulatli, Behaviors of the energy of solutions of the wave equation with damping and external force, Journal of Mathematical Analysis and Applications, 389 (2012), 205-225.doi: 10.1016/j.jmaa.2011.11.051.

    [12]

    B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Scient. Éc. Norm. Sup., 36 (2003), 525-551.doi: 10.1016/S0012-9593(03)00021-1.

    [13]

    G. Francfort, An introduction to H-measures and their applications, Variational problems in materials science, 85-110, Progr. Nonlinear Differential Equations Appl., 68, Birkhuser, Basel, 2006.doi: 10.1007/3-7643-7565-5_7.

    [14]

    P. Gérard, Microlocal defect measures, Comm. Partial Diff. eq., 16 (1991), 1761-1794.doi: 10.1080/03605309108820822.

    [15]

    P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Mathematical Journal, 71 (1993), 559-607.doi: 10.1215/S0012-7094-93-07122-0.

    [16]

    R. Ikehata, Energy decay of solutions for the semilinear dissipative wave equations in an exterior domain, Funkcial. Ekvac., 44 (2001), 487-499.

    [17]

    R. Ikehata, Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain, Journal of Differential Equations, 188 (2003), 390-405.doi: 10.1016/S0022-0396(02)00101-8.

    [18]

    R. Ikehata and T. Matsuyama, L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon., 55 (2002), 33-42.

    [19]

    R. Joly and L. Camille, Stabilization for the semilinear wave equation with geometric control condition, Anal. PDE, 6 (2013), 1089-1119.doi: 10.2140/apde.2013.6.1089.

    [20]

    S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Jpn., 47 (1995), 617-653.doi: 10.2969/jmsj/04740617.

    [21]

    M. Khenissi, Équation des ondes amorties dans un domaine extérieur, Bull. Soc. Math. France, 131 (2003), 211-228.

    [22]

    P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, 26. Academic Press, Inc., Boston, MA, 1989.

    [23]

    G. Lebeau, Equation des ondes amorties, In Algebraic and geometric methods in mathematical physics, proceedings of the Kaciveli Summer School, Crimea, Ukraine, Springer, 19 (1996), 73-109.

    [24]

    M. Nakao, Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation, J. Diff. Eq., 148 (1998), 388-406.doi: 10.1006/jdeq.1998.3468.

    [25]

    M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations, Math. Z., 238 (2001), 781-797.doi: 10.1007/s002090100275.

    [26]

    M. Nakao, Decay of solutions to the Cauchy problem for the Klein-Gordon equation with a localized nonlinear dissipation, Hokkaido Math. J., 27 (1998), 245-271.doi: 10.14492/hokmj/1351001285.

    [27]

    K. Ono, $L^{1}$ estimates for dissipative wave equations in exterior domains, J. Math. Anal. Appl., 333 (2007), 1079-1092.doi: 10.1016/j.jmaa.2006.01.031.

    [28]

    R. Racke, Nonhomogeneous nonlinear damped wave equations in unbounded domains, Math. Methods Appl. Sci., 13 (1990), 481-491.doi: 10.1002/mma.1670130604.

    [29]

    D. Tataru, The $X^{s,\theta }$ spaces and unique continuation for solutions to the semilinear wave equations, Comm. P.D.E., 21 (1996), 841-887.doi: 10.1080/03605309608821210.

    [30]

    L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proceedings of the Royal Society of Edinburgh.Section A. Mathematics, 115 (1990), 193-230.doi: 10.1017/S0308210500020606.

    [31]

    E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. pures et appl., 70 (1992), 513-529.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(210) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return