\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions

Abstract Related Papers Cited by
  • We investigate a class of semilinear parabolic and elliptic problems with fractional dynamic boundary conditions. We introduce two new operators, the so-called fractional Wentzell Laplacian and the fractional Steklov operator, which become essential in our study of these nonlinear problems. Besides giving a complete characterization of well-posedness and regularity of bounded solutions, we also establish the existence of finite-dimensional global attractors and also derive basic conditions for blow-up.
    Mathematics Subject Classification: Primary: 35J92, 35A15, 35B41; Secondary: 35K65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, 314. Springer-Verlag, Berlin, 1996.doi: 10.1007/978-3-662-03282-4.

    [2]

    K. Bogdan, K. Burdzy and Z-Q. Chen, Censored stable processes, Probab. Theory Related Fields, 127 (2003), 89-152.doi: 10.1007/s00440-003-0275-1.

    [3]

    J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000.doi: 10.1017/CBO9780511526404.

    [4]

    D. Daners and P. Drábek, A priori estimates for a class of quasi-linear elliptic equations, Trans. Amer. Math. Soc., 361 (2009), 6475-6500.doi: 10.1090/S0002-9947-09-04839-9.

    [5]

    E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511566158.

    [6]

    A. Di Castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.doi: 10.1016/j.jfa.2014.05.023.

    [7]

    A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. doi: 10.1016/j.anihpc.2015.04.003.

    [8]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [9]

    S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., to appear.

    [10]

    Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), 493-540.doi: 10.1142/S0218202512500546.

    [11]

    M. Efendiev and S. Zelik, Finite-dimensional attractors and exponential attractors for degenerate doubly nonlinear equations, Math. Methods Appl. Sci., 32 (2009), 1638-1668.doi: 10.1002/mma.1102.

    [12]

    M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition. De Gruyter Studies in Mathematics, 19. Berlin, 2011.

    [13]

    C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, J. Differential Equations, 253 (2012), 126-166.doi: 10.1016/j.jde.2012.02.010.

    [14]

    C. G. Gal, The role of surface diffusion in dynamic boundary conditions: Where do we stand?, Milan Journal of Mathematics, 83 (2015), 237-278.doi: 10.1007/s00032-015-0242-1.

    [15]

    C. G. Gal and M. Warma, Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains, J. Dyn. Diff. Eqns., to appear.

    [16]

    C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Disc. Cont. Dyn. Syst., Series A, 36 (2016), 1279-1319.

    [17]

    R. Gorenflo and F. Mainardi, Random walk models approximating symmetric space-fractional diffusion processes, Problems and methods in mathematical physics (Chemnitz, 1999), Oper. Theory Adv. Appl., Birkhäuser, Basel, 121 (2001), 120-145.

    [18]

    Q. Y. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.doi: 10.1007/s00220-006-0054-9.

    [19]

    Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.doi: 10.1142/S021949370500150X.

    [20]

    P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman, Boston, MA, 1985.

    [21]

    M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598.doi: 10.1137/090766607.

    [22]

    A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb R^N$, Math. Rep., 2 (1984), xiv+221 pp.

    [23]

    M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type, Hokkaido Math. J., 21 (1992), 221-229.doi: 10.14492/hokmj/1381413677.

    [24]

    T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368.doi: 10.1007/s00220-015-2356-2.

    [25]

    R. Muralidhar, D. Ramkrishna, H. Nakanishi and D. Jacobs, Anomalous diffusion: A dynamic perspective, Physica A: Statistical Mechanics and its Applications, 167 (1990), 539-559.doi: 10.1016/0378-4371(90)90132-C.

    [26]

    E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, NJ, 2005.

    [27]

    S. Umarov and R. Gorenflo, On multi-dimensional random walk models approximating symmetric space-fractional diffusion processes, Fract. Calc. Appl. Anal., 8 (2005), 73-88.

    [28]

    J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.doi: 10.3934/dcdss.2014.7.857.

    [29]

    L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous Diffusion: a tutorial, In "Order and chaos", 10th volume, T. Bountis (ed.), Patras University Press, 2008.

    [30]

    M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.doi: 10.1007/s11118-014-9443-4.

    [31]

    M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains, Commun. Pure Appl. Anal., 14 (2015), 2043-2067.doi: 10.3934/cpaa.2015.14.2043.

    [32]

    M. Warma, The fractional Neumann and Robin boundary conditions for the regional fractional $p$-Laplacian, NoDEA Nonlinear Differential Equations Appl., 23 (2016), p1.doi: 10.1007/s00030-016-0354-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(264) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return