-
Previous Article
The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach
- EECT Home
- This Issue
-
Next Article
Energy decay rates for solutions of the wave equation with linear damping in exterior domain
Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions
1. | Department of Mathematics, Florida International University, Miami, FL, 33199 |
2. | University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377 |
References:
[1] |
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, 314. Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-662-03282-4. |
[2] |
K. Bogdan, K. Burdzy and Z-Q. Chen, Censored stable processes, Probab. Theory Related Fields, 127 (2003), 89-152.
doi: 10.1007/s00440-003-0275-1. |
[3] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000.
doi: 10.1017/CBO9780511526404. |
[4] |
D. Daners and P. Drábek, A priori estimates for a class of quasi-linear elliptic equations, Trans. Amer. Math. Soc., 361 (2009), 6475-6500.
doi: 10.1090/S0002-9947-09-04839-9. |
[5] |
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.
doi: 10.1017/CBO9780511566158. |
[6] |
A. Di Castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.
doi: 10.1016/j.jfa.2014.05.023. |
[7] |
A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().
doi: 10.1016/j.anihpc.2015.04.003. |
[8] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[9] |
S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions,, Rev. Mat. Iberoam., ().
|
[10] |
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), 493-540.
doi: 10.1142/S0218202512500546. |
[11] |
M. Efendiev and S. Zelik, Finite-dimensional attractors and exponential attractors for degenerate doubly nonlinear equations, Math. Methods Appl. Sci., 32 (2009), 1638-1668.
doi: 10.1002/mma.1102. |
[12] |
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition. De Gruyter Studies in Mathematics, 19. Berlin, 2011. |
[13] |
C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, J. Differential Equations, 253 (2012), 126-166.
doi: 10.1016/j.jde.2012.02.010. |
[14] |
C. G. Gal, The role of surface diffusion in dynamic boundary conditions: Where do we stand?, Milan Journal of Mathematics, 83 (2015), 237-278.
doi: 10.1007/s00032-015-0242-1. |
[15] |
C. G. Gal and M. Warma, Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains,, J. Dyn. Diff. Eqns., ().
|
[16] |
C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Disc. Cont. Dyn. Syst., Series A, 36 (2016), 1279-1319. |
[17] |
R. Gorenflo and F. Mainardi, Random walk models approximating symmetric space-fractional diffusion processes, Problems and methods in mathematical physics (Chemnitz, 1999), Oper. Theory Adv. Appl., Birkhäuser, Basel, 121 (2001), 120-145. |
[18] |
Q. Y. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[19] |
Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.
doi: 10.1142/S021949370500150X. |
[20] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman, Boston, MA, 1985. |
[21] |
M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598.
doi: 10.1137/090766607. |
[22] |
A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb R^N$, Math. Rep., 2 (1984), xiv+221 pp. |
[23] |
M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type, Hokkaido Math. J., 21 (1992), 221-229.
doi: 10.14492/hokmj/1381413677. |
[24] |
T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368.
doi: 10.1007/s00220-015-2356-2. |
[25] |
R. Muralidhar, D. Ramkrishna, H. Nakanishi and D. Jacobs, Anomalous diffusion: A dynamic perspective, Physica A: Statistical Mechanics and its Applications, 167 (1990), 539-559.
doi: 10.1016/0378-4371(90)90132-C. |
[26] |
E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, NJ, 2005. |
[27] |
S. Umarov and R. Gorenflo, On multi-dimensional random walk models approximating symmetric space-fractional diffusion processes, Fract. Calc. Appl. Anal., 8 (2005), 73-88. |
[28] |
J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.
doi: 10.3934/dcdss.2014.7.857. |
[29] |
L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous Diffusion: a tutorial, In "Order and chaos", 10th volume, T. Bountis (ed.), Patras University Press, 2008. |
[30] |
M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.
doi: 10.1007/s11118-014-9443-4. |
[31] |
M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains, Commun. Pure Appl. Anal., 14 (2015), 2043-2067.
doi: 10.3934/cpaa.2015.14.2043. |
[32] |
M. Warma, The fractional Neumann and Robin boundary conditions for the regional fractional $p$-Laplacian, NoDEA Nonlinear Differential Equations Appl., 23 (2016), p1.
doi: 10.1007/s00030-016-0354-5. |
show all references
References:
[1] |
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, 314. Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-662-03282-4. |
[2] |
K. Bogdan, K. Burdzy and Z-Q. Chen, Censored stable processes, Probab. Theory Related Fields, 127 (2003), 89-152.
doi: 10.1007/s00440-003-0275-1. |
[3] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000.
doi: 10.1017/CBO9780511526404. |
[4] |
D. Daners and P. Drábek, A priori estimates for a class of quasi-linear elliptic equations, Trans. Amer. Math. Soc., 361 (2009), 6475-6500.
doi: 10.1090/S0002-9947-09-04839-9. |
[5] |
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.
doi: 10.1017/CBO9780511566158. |
[6] |
A. Di Castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.
doi: 10.1016/j.jfa.2014.05.023. |
[7] |
A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().
doi: 10.1016/j.anihpc.2015.04.003. |
[8] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[9] |
S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions,, Rev. Mat. Iberoam., ().
|
[10] |
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), 493-540.
doi: 10.1142/S0218202512500546. |
[11] |
M. Efendiev and S. Zelik, Finite-dimensional attractors and exponential attractors for degenerate doubly nonlinear equations, Math. Methods Appl. Sci., 32 (2009), 1638-1668.
doi: 10.1002/mma.1102. |
[12] |
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition. De Gruyter Studies in Mathematics, 19. Berlin, 2011. |
[13] |
C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, J. Differential Equations, 253 (2012), 126-166.
doi: 10.1016/j.jde.2012.02.010. |
[14] |
C. G. Gal, The role of surface diffusion in dynamic boundary conditions: Where do we stand?, Milan Journal of Mathematics, 83 (2015), 237-278.
doi: 10.1007/s00032-015-0242-1. |
[15] |
C. G. Gal and M. Warma, Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains,, J. Dyn. Diff. Eqns., ().
|
[16] |
C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Disc. Cont. Dyn. Syst., Series A, 36 (2016), 1279-1319. |
[17] |
R. Gorenflo and F. Mainardi, Random walk models approximating symmetric space-fractional diffusion processes, Problems and methods in mathematical physics (Chemnitz, 1999), Oper. Theory Adv. Appl., Birkhäuser, Basel, 121 (2001), 120-145. |
[18] |
Q. Y. Guan, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[19] |
Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.
doi: 10.1142/S021949370500150X. |
[20] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman, Boston, MA, 1985. |
[21] |
M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598.
doi: 10.1137/090766607. |
[22] |
A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb R^N$, Math. Rep., 2 (1984), xiv+221 pp. |
[23] |
M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type, Hokkaido Math. J., 21 (1992), 221-229.
doi: 10.14492/hokmj/1381413677. |
[24] |
T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368.
doi: 10.1007/s00220-015-2356-2. |
[25] |
R. Muralidhar, D. Ramkrishna, H. Nakanishi and D. Jacobs, Anomalous diffusion: A dynamic perspective, Physica A: Statistical Mechanics and its Applications, 167 (1990), 539-559.
doi: 10.1016/0378-4371(90)90132-C. |
[26] |
E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, NJ, 2005. |
[27] |
S. Umarov and R. Gorenflo, On multi-dimensional random walk models approximating symmetric space-fractional diffusion processes, Fract. Calc. Appl. Anal., 8 (2005), 73-88. |
[28] |
J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.
doi: 10.3934/dcdss.2014.7.857. |
[29] |
L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous Diffusion: a tutorial, In "Order and chaos", 10th volume, T. Bountis (ed.), Patras University Press, 2008. |
[30] |
M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.
doi: 10.1007/s11118-014-9443-4. |
[31] |
M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains, Commun. Pure Appl. Anal., 14 (2015), 2043-2067.
doi: 10.3934/cpaa.2015.14.2043. |
[32] |
M. Warma, The fractional Neumann and Robin boundary conditions for the regional fractional $p$-Laplacian, NoDEA Nonlinear Differential Equations Appl., 23 (2016), p1.
doi: 10.1007/s00030-016-0354-5. |
[1] |
Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043 |
[2] |
Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175 |
[3] |
Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001 |
[4] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[5] |
Yulong Li, Aleksey S. Telyakovskiy, Emine Çelik. Analysis of one-sided 1-D fractional diffusion operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1673-1690. doi: 10.3934/cpaa.2022039 |
[6] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[7] |
Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192 |
[8] |
Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279 |
[9] |
Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216 |
[10] |
Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1 |
[11] |
Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 |
[12] |
Yixuan Wu, Yanzhi Zhang. Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 851-876. doi: 10.3934/dcdss.2022016 |
[13] |
Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099 |
[14] |
Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007 |
[15] |
Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264 |
[16] |
Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206 |
[17] |
Moulay Rchid Sidi Ammi, Mostafa Tahiri, Delfim F. M. Torres. Necessary optimality conditions of a reaction-diffusion SIR model with ABC fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 621-637. doi: 10.3934/dcdss.2021155 |
[18] |
Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems and Imaging, 2022, 16 (3) : 613-624. doi: 10.3934/ipi.2021064 |
[19] |
Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, 2021, 29 (5) : 3243-3260. doi: 10.3934/era.2021036 |
[20] |
Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]