June  2016, 5(2): 337-348. doi: 10.3934/eect.2016007

A remark on blow up criterion of three-dimensional nematic liquid crystal flows

1. 

School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

Received  January 2016 Revised  March 2016 Published  June 2016

In this paper, we study the initial value problem for the three-dimensional nematic liquid crystal flows. Blow up criterion of smooth solutions is established by the energy method, which refines the previous result.
Citation: Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations and Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007
References:
[1]

G. Brown and W. Shaw, The Mesomorphic State, Liquid Crystals, Chem. Rev., 57 (1957), 1049-1157. doi: 10.1021/cr50018a002.

[2]

Q. Chen, Z. Tan and G. Wu, LPS's criterion for incompressible nematics liquid crystal flows, Acta Mathematica Scientia, 34 (2014), 1072-1080. doi: 10.1016/S0252-9602(14)60070-9.

[3]

J. Chemin, perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl. 14, The Clarendon Press / Oxford Univ. Press, New York, 1998.

[4]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378. doi: 10.1007/BF00253358.

[5]

J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals, The IMA Volumes in Mathematics and its Applications, 5, Springer-Verlag, New York, 1987, Papers from the IMA workshop held in Minneapolis, Minn., January 21-25, 1985. doi: 10.1007/978-1-4613-8743-5.

[6]

J. Ericksen, Equilibrium theory of liquid crystals, Advances in Liquid Crystals, 2 (1976), 233-298. doi: 10.1016/B978-0-12-025002-8.50012-9.

[7]

F. Frank, On the theory of liquid crystals, Discussions Faraday Soc., 25 (1958), 19-28.

[8]

P. G. de Gennes, The Physics of Liquid Crystals, Oxford, 1974.

[9]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space, Commun. Pure Appl. Anal., 13 (2014), 225-236, arXiv:1305.1395v2.

[10]

R. Hardt, D. Kinderlehrer and F. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., 105 (1986), 547-570. doi: 10.1007/BF01238933.

[11]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$, Cal. Var. Part. Differ. Equ., 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5.

[12]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows, Comm. Part. Differ.Equ., 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366.

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[14]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278. doi: 10.1007/s002090100332.

[15]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[16]

F. Leslie, Theory of flow phenomemum in liquid crystal, In: Brown (ed.) Advances in Liquid Crystals, Academic Press, New York, 4 (1979), 1-81.

[17]

F. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.

[18]

F. Lin and C. Liu, Nonparabolic Dissipative Systems Modeling the Flow of Liquid Crystals, Comm. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[19]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.

[20]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math. Ser. B, 31 (2010), 921-938. doi: 10.1007/s11401-010-0612-5.

[21]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press: Cambridge, 2002.

[22]

C. Oseen, Die anisotropen Fliissigkeiten, Tatsachen und Theorien, Forts. Chemie, Phys. und Phys. Chemic, 21 (1929), 25-113.

[23]

H. Triebel, Theory of Function Spaces, Monograph in Mathematics, vol. 78. Birkhauser: Basel, 1983. doi: 10.1007/978-3-0346-0416-1.

[24]

Y. Wang and Y. Wang, Blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity, Math. Meth. Appl. Sci. 36 (2013), 60-68. doi: 10.1002/mma.2569.

[25]

Y. Wang, A logarithmically improved blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity, Scienceasia, 39 (2013), 73-78.

[26]

Y. X. Wang, Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations, Boundary Value Problems, 2015 (2015), 10pp. doi: 10.1186/s13661-015-0382-9.

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Analysis: Real World Appl., 12 (2011), 1510-1531. doi: 10.1016/j.nonrwa.2010.10.010.

[28]

Y. Zhang, Z. Tan and G. Wu, Blow up criterion for incompressible nematics liquid crystal flows,, preprint, (). 

[29]

Z. Zhang, S. Liu, J. Pan and L. Ma, A refined blow up criterion for the nematics liquid crystals, Int. J. Contemp. Math. Sciences, 9 (2014), 441-446. doi: 10.12988/ijcms.2014.4438.

show all references

References:
[1]

G. Brown and W. Shaw, The Mesomorphic State, Liquid Crystals, Chem. Rev., 57 (1957), 1049-1157. doi: 10.1021/cr50018a002.

[2]

Q. Chen, Z. Tan and G. Wu, LPS's criterion for incompressible nematics liquid crystal flows, Acta Mathematica Scientia, 34 (2014), 1072-1080. doi: 10.1016/S0252-9602(14)60070-9.

[3]

J. Chemin, perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl. 14, The Clarendon Press / Oxford Univ. Press, New York, 1998.

[4]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378. doi: 10.1007/BF00253358.

[5]

J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals, The IMA Volumes in Mathematics and its Applications, 5, Springer-Verlag, New York, 1987, Papers from the IMA workshop held in Minneapolis, Minn., January 21-25, 1985. doi: 10.1007/978-1-4613-8743-5.

[6]

J. Ericksen, Equilibrium theory of liquid crystals, Advances in Liquid Crystals, 2 (1976), 233-298. doi: 10.1016/B978-0-12-025002-8.50012-9.

[7]

F. Frank, On the theory of liquid crystals, Discussions Faraday Soc., 25 (1958), 19-28.

[8]

P. G. de Gennes, The Physics of Liquid Crystals, Oxford, 1974.

[9]

Y. Hao and X. Liu, The existence and blow-up criterion of liquid crystals system in critical Besov space, Commun. Pure Appl. Anal., 13 (2014), 225-236, arXiv:1305.1395v2.

[10]

R. Hardt, D. Kinderlehrer and F. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., 105 (1986), 547-570. doi: 10.1007/BF01238933.

[11]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in $\mathbbR^2$, Cal. Var. Part. Differ. Equ., 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5.

[12]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows, Comm. Part. Differ.Equ., 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366.

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[14]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278. doi: 10.1007/s002090100332.

[15]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[16]

F. Leslie, Theory of flow phenomemum in liquid crystal, In: Brown (ed.) Advances in Liquid Crystals, Academic Press, New York, 4 (1979), 1-81.

[17]

F. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.

[18]

F. Lin and C. Liu, Nonparabolic Dissipative Systems Modeling the Flow of Liquid Crystals, Comm. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[19]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.

[20]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math. Ser. B, 31 (2010), 921-938. doi: 10.1007/s11401-010-0612-5.

[21]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press: Cambridge, 2002.

[22]

C. Oseen, Die anisotropen Fliissigkeiten, Tatsachen und Theorien, Forts. Chemie, Phys. und Phys. Chemic, 21 (1929), 25-113.

[23]

H. Triebel, Theory of Function Spaces, Monograph in Mathematics, vol. 78. Birkhauser: Basel, 1983. doi: 10.1007/978-3-0346-0416-1.

[24]

Y. Wang and Y. Wang, Blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity, Math. Meth. Appl. Sci. 36 (2013), 60-68. doi: 10.1002/mma.2569.

[25]

Y. Wang, A logarithmically improved blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity, Scienceasia, 39 (2013), 73-78.

[26]

Y. X. Wang, Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations, Boundary Value Problems, 2015 (2015), 10pp. doi: 10.1186/s13661-015-0382-9.

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Analysis: Real World Appl., 12 (2011), 1510-1531. doi: 10.1016/j.nonrwa.2010.10.010.

[28]

Y. Zhang, Z. Tan and G. Wu, Blow up criterion for incompressible nematics liquid crystal flows,, preprint, (). 

[29]

Z. Zhang, S. Liu, J. Pan and L. Ma, A refined blow up criterion for the nematics liquid crystals, Int. J. Contemp. Math. Sciences, 9 (2014), 441-446. doi: 10.12988/ijcms.2014.4438.

[1]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[2]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[3]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[4]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[5]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[6]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure and Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[7]

Yang Liu, Xin Zhong. On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5219-5238. doi: 10.3934/cpaa.2020234

[8]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[9]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[10]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[11]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[12]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[13]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[14]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[15]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[16]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[17]

Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739

[18]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[19]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[20]

Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (158)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]