Citation: |
[1] |
W. F. Ames, Discontinuity formation in solutions of homogeneous non-linear hyperbolic equations possessing smooth initial data, Int. J. Non-Linear Mech., 5 (1970), 605-615.doi: 10.1016/0020-7462(70)90050-8. |
[2] |
S. Bargmann, Remarks on the Green-Naghdi theory of heat conduction, J. Non-Equilib. Thermodyn., 38 (2013), 101-118.doi: 10.1515/jnetdy-2012-0015. |
[3] |
S. Bargmann and P. Steinmann, Modeling and simulation of first and second sound in solids, Int. J. Solids Structures, 45 (2008), 6067-6073.doi: 10.1016/j.ijsolstr.2008.07.026. |
[4] |
S. Bargmann, P. Steinmann and P. M. Jordan, On the propagation of second-sound in linear and nonlinear media: Results from Green-Naghdi theory, Phys. Lett. A, 372 (2008), 4418-4424.doi: 10.1016/j.physleta.2008.04.010. |
[5] |
R. T. Beyer, The parameter $B/A$, in Nonlinear Acoustics: Theory and Applications (eds. M. F. Hamilton and D. T. Blackstock), Academic Press, (1997), 25-39. |
[6] |
J. Bissell and B. Straughan, Discontinuity waves as tipping points: Applications to biological & sociological systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1911-1934.doi: 10.3934/dcdsb.2014.19.1911. |
[7] |
D. T. Blackstock, Approximate equations governing finite-amplitude sound in thermoviscous fluids, GD/E Report GD-1463-52, 1963. |
[8] |
D. T. Blackstock, Propagation of plane sound waves of finite amplitude in nondissipative fluids, J. Acoust. Soc. Am., 34 (1962), 9-30.doi: 10.1121/1.1909033. |
[9] |
B. Brunnhuber and B. Kaltenbacher, Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 4515-4535, arXiv:1311.1692.doi: 10.3934/dcds.2014.34.4515. |
[10] |
B. Brunnhuber, B. Kaltenbacher and P. Radu, Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling, Evol. Equ. Control Theory, 3 (2014), 595-626, arXiv:1410.0797.doi: 10.3934/eect.2014.3.595. |
[11] |
B. Brunnhuber, Well-posedness and exponential decay of solutions for the Blackstock-Crighton-Kuznetsov equation, J. Math. Anal. Appl., 433 (2016), 1037-1054, arXiv:1405.6494.doi: 10.1016/j.jmaa.2015.07.046. |
[12] |
B. Brunnhuber and P. M. Jordan, On the reduction of Blackstock's model of thermoviscous compressible flow via Becker's assumption, Int. J. Non-Linear Mech., 78 (2016), 131-132.doi: 10.1016/j.ijnonlinmec.2015.10.008. |
[13] |
P. J. Chen, Growth and decay of waves in solids, in Handbuch der Physik, vol. VIa/3 (eds. S. Flügge and C. Truesdell), Springer, Berlin, (1973), 303-402. |
[14] |
P. J. Chen, On the growth and decay of one-dimensional temperature rate waves, Arch. Ration. Mech. Anal., 35 (1969), 1-15.doi: 10.1007/BF00248491. |
[15] |
M. Chen, M. Torres and T. Walsh, Existence of travelling wave solutions of a high-order nonlinear acoustic wave equation, Phys. Lett. A, 373 (2009), 1037-1043.doi: 10.1016/j.physleta.2009.01.042. |
[16] |
W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech., 18 (1964), 44-64.doi: 10.1017/S0022112064000040. |
[17] |
I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation, Q. J. Mech. Appl. Math., 60 (2007), 473-495.doi: 10.1093/qjmam/hbm017. |
[18] |
I. Christov, C. I. Christov and P. M. Jordan, Corrigendum and addendum: Modeling weakly nonlinear acoustic wave propagation, Q. J. Mech. Appl. Math., 68 (2015), 231-233.doi: 10.1093/qjmam/hbu023. |
[19] |
I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance, Math. Comput. Simulat., 127 (2016), 2-18.doi: 10.1016/j.matcom.2013.03.011. |
[20] |
I. Christov, P. M. Jordan and C. I. Christov, Nonlinear acoustic propagation in homentropic perfect gases: A numerical study, Phys. Lett. A, 353 (2006), 273-280.doi: 10.1016/j.physleta.2005.12.101. |
[21] |
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.doi: 10.1007/BF02124750. |
[22] |
D. G. Crighton, Model equations of nonlinear acoustics, Annu. Rev. Fluid Mech., 11 (1979), 11-33.doi: 10.1146/annurev.fl.11.010179.000303. |
[23] |
A. M. J. Davis and H. Brenner, Thermal and viscous effects on sound waves: Revised classical theory, J. Acoust. Soc. Am., 132 (2012), 2963-2969.doi: 10.1121/1.4757971. |
[24] |
A. R. Elcrat, On the propagation of sonic discontinuities in the unsteady flow of a perfect gas, Int. J. Eng. Sci., 15 (1977), 29-34.doi: 10.1016/0020-7225(77)90066-0. |
[25] |
Y. B. Fu and N. H. Scott, The transition from acceleration wave to shock wave, Int. J. Eng. Sci., 29 (1991), 617-624.doi: 10.1016/0020-7225(91)90066-C. |
[26] |
A. E. Green and P. M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289-306.doi: 10.1016/0377-0257(94)01288-S. |
[27] |
A. E. Green and P. M. Naghdi, An extended theory for incompressible viscous fluid flow, J. Non-Newtonian Fluid Mech., 66 (1996), 233-255.doi: 10.1016/S0377-0257(96)01478-4. |
[28] |
A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics, Proc. R. Soc. Lond. A, 448 (1995), 335-356.doi: 10.1098/rspa.1995.0020. |
[29] |
A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua, Proc. R. Soc. Lond. A, 448 (1995), 357-377.doi: 10.1098/rspa.1995.0021. |
[30] |
A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua, Proc. R. Soc. Lond. A, 448 (1995), 379-388.doi: 10.1098/rspa.1995.0022. |
[31] |
M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126.doi: 10.1007/BF00281373. |
[32] |
M. F. Hamilton and C. L. Morfey, Model equations, in Nonlinear Acoustics: Theory and Applications (eds. M. F. Hamilton and D. T. Blackstock), Academic Press, (1997), 41-63. |
[33] |
B. M. Johnson, Analytical shock solutions at large and small Prandtl number, J. Fluid Mech., 726 (2013), R4, 12pp.doi: 10.1017/jfm.2013.262. |
[34] |
B. M. Johnson, Closed-form shock solutions, J. Fluid Mech., 745 (2014), R1, 11pp.doi: 10.1017/jfm.2014.107. |
[35] |
P. M. Jordan, A survey of weakly-nonlinear acoustic models: 1910-2009, Mech. Res. Commun., 73 (2016), 127-139.doi: 10.1016/j.mechrescom.2016.02.014. |
[36] |
P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation, Phys. Lett. A, 326 (2004), 77-84.doi: 10.1016/j.physleta.2004.03.067. |
[37] |
P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2189-2205.doi: 10.3934/dcdsb.2014.19.2189. |
[38] |
P. M. Jordan, A note on the Lambert $W$-function: Applications in the mathematical and physical sciences, in Mathematics of Continuous and Discrete Dynamical Systems (ed. A. B. Gumel), American Mathematical Society, 618 (2014), 247-263.doi: 10.1090/conm/618. |
[39] |
P. M. Jordan and C. I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves, J. Sound Vib., 281 (2005), 1207-1216.doi: 10.1016/j.jsv.2004.03.067. |
[40] |
P. M. Jordan and B. Straughan, Acoustic acceleration waves in homentropic Green and Naghdi gases, Proc. R. Soc. A, 462 (2006), 3601-3611.doi: 10.1098/rspa.2006.1739. |
[41] |
P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids, Eur. J. Mech. B/Fluids, 34 (2012), 56-63.doi: 10.1016/j.euromechflu.2012.01.016. |
[42] |
B. Kaltenbacher, Mathematics of nonlinear acoustics, Evol. Equ. Control Theory, 4 (2015), 447-491.doi: 10.3934/eect.2015.4.447. |
[43] |
B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 503-523.doi: 10.3934/dcdss.2009.2.503. |
[44] |
B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations without interior damping, Appl. Math. Optim., 62 (2010), 381-410.doi: 10.1007/s00245-010-9108-7. |
[45] |
B. Kaltenbacher, I. Lasiecka and S. Veljović, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data, in Parabolic Problems: Herbert Amann Festschrift (eds. J. Escher et al.), Springer, 80 (2011), 357-387.doi: 10.1007/978-3-0348-0075-4_19. |
[46] |
B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay, Math. Nachr., 285 (2012), 295-321.doi: 10.1002/mana.201000007. |
[47] |
R. S. Keiffer, R. McNorton, P. M. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids, Wave Motion, 48 (2011), 782-790.doi: 10.1016/j.wavemoti.2011.04.013. |
[48] |
W. Lauterborn, T. Kurz and I. Akhatov, Nonlinear acoustics in fluids, in Springer Handbook of Acoustics (ed. T. D. Rossing), Springer, (2007), 257-297.doi: 10.1007/978-0-387-30425-0_8. |
[49] |
P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973.doi: 10.1137/1.9781611970562. |
[50] |
M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall, J. Fluid Mech., 31 (1968), 501-528.doi: 10.1017/S0022112068000303. |
[51] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, New York, NY, 2002.doi: 10.1017/CBO9780511791253. |
[52] |
H. Lin and A. J. Szeri, Shock formation in the presence of entropy gradients, J. Fluid Mech., 431 (2001), 161-188.doi: 10.1017/S0022112000003104. |
[53] |
K. A. Lindsay and B. Straughan, Acceleration waves and second sound in a perfect fluid, Arch. Rational Mech. Anal., 68 (1978), 53-87.doi: 10.1007/BF00276179. |
[54] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I, Acta Acoust. united Ac., 82 (1996), 579-606. |
[55] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part II, Acta Acust. united Ac., 83 (1997), 197-222. |
[56] |
S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part III, Acta Acust. united Ac., 83 (1997), 827-846. |
[57] |
A. Morro, Jump relations and discontinuity waves in conductors with memory, Math. Comput. Modell., 43 (2006), 138-149.doi: 10.1016/j.mcm.2005.04.016. |
[58] |
K. Naugolnykh and L. Ostrovsky, Nonlinear Wave Processes in Acoustics, Cambridge University Press, New York, NY, 1998.doi: 10.2277/052139984X. |
[59] |
H. Ockendon and J. R. Ockendon, Waves and Compressible Flow, Springer, Berlin, 2004.doi: 10.1007/b97537. |
[60] |
H. Ockendon and J. R. Ockendon, Nonlinearity in fluid resonances, Meccanica, 36 (2001), 297-321.doi: 10.1023/A:1013911407811. |
[61] |
M. Ostoja-Starzewski and J. Trębicki, On the growth and decay of acceleration waves in random media, Proc. R. Soc. Lond. A, 455 (1999), 2577-2614.doi: 10.1098/rspa.1999.0418. |
[62] |
R. Quintanilla and B. Straughan, Nonlinear waves in a Green-Naghdi dissipationless fluid, J. Non-Newtonian Fluid Mech., 154 (2008), 207-210.doi: 10.1016/j.jnnfm.2008.04.006. |
[63] |
R. Quintanilla and B. Straughan, Green-Naghdi type III viscous fluids, Int. J. Heat Mass Transf., 55 (2012), 710-714.doi: 10.1016/j.ijheatmasstransfer.2011.10.039. |
[64] |
A. R. Rassmusen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids, Acta Appl. Math., 115 (2011), 43-61.doi: 10.1007/s10440-010-9581-7. |
[65] |
A. R. Rasmussen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Compound waves in a higher order nonlinear model of thermoviscous fluids, Math. Comput. Simulat., 127 (2016), 236-251.doi: 10.1016/j.matcom.2014.01.009. |
[66] |
R. A. Saenger and G. E. Hudson, Periodic shock waves in resonating gas columns, J. Acoust. Soc. Am., 32 (1960), 961-970.doi: 10.1121/1.1908343. |
[67] |
L. I. Sedov, Mechanics of Continuous Media, World Scientific, River Edge, NJ, 1997.doi: 10.1142/0712. |
[68] |
R. L. Seliger and G. B. Whitham, Variational principles in continuum mechanics, Proc. R. Soc. A, 305 (1968), 1-25.doi: 10.1098/rspa.1968.0103. |
[69] |
L. H. Söderholm, A higher order acoustic equation for the slightly viscous case, Acta Acust. united Ac., 87 (2000), 29-33. |
[70] |
B. Straughan, Green-Naghdi fluid with non-thermal equilibrium effects, Proc. R. Soc. A, 466 (2010), 2021-2032.doi: 10.1098/rspa.2009.0523. |
[71] |
B. Straughan, Heat Waves, Springer, New York, NY, 2011.doi: 10.1007/978-1-4614-0493-4. |
[72] |
B. Straughan, Shocks and acceleration waves in modern continuum mechanics and in social systems, Evol. Equ. Control Theory, 3 (2014), 541-555.doi: 10.3934/eect.2014.3.541. |
[73] |
P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, NY, 1972. |
[74] |
T. Y. Thomas, The growth and decay of sonic discontinuities in ideal gases, J. Math. Mech., 6 (1957), 455-469.doi: 10.1512/iumj.1957.6.56022. |
[75] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, $3^{rd}$ edition, Springer-Verlag, Berlin/Heidelberg, 2009.doi: 10.1007/b79761. |
[76] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, NY, 1974.doi: 10.1002/9781118032954. |
[77] |
T. W. Wright, An intrinsic description of unsteady shock waves, Q. J. Mech. Appl. Math., 29 (1976), 311-324.doi: 10.1093/qjmam/29.3.311. |