• Previous Article
    The effects of coupling on finite-amplitude acoustic traveling waves in thermoviscous gases: Blackstock's models
  • EECT Home
  • This Issue
  • Next Article
    Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids
September  2016, 5(3): 367-381. doi: 10.3934/eect.2016009

Oscillating nonlinear acoustic shock waves

1. 

Bogolyubov Institute for Theoretical Physics, 03143 Kiev, Ukraine

2. 

GreenHydrogen, DK-6000 Kolding, Denmark

3. 

Department of Physics and Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

4. 

Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Received  January 2016 Revised  March 2016 Published  August 2016

We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined.
Citation: Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations and Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009
References:
[1]

B. O. Enflo and C. M. Hedberg, Theory of Nonlinear Acoustics in Fluids, $1^{st}$ edition, Kluwer Academic, Dordrecht, 2002.

[2]

W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech., 18 (1964), 44-64. doi: 10.1017/S0022112064000040.

[3]

I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation, Q. Jl Mech. Appl. Math., 60 (2007), 473-495. doi: 10.1093/qjmam/hbm017.

[4]

I. Christov, C. I. Christov and P. M. Jordan, Corrigendum and addendum: Modeling weakly nonlinear acoustic wave propagation, Q. Jl Mech. Appl. Math., 68 (2015), 231-233. doi: 10.1093/qjmam/hbu023.

[5]

S. M. Hagsäter, T. G. Jensen, H. Bruus and J. P. Kutter, Acoustic resonances in piezo-actuated microfluidic chips: Full-image micro-piv experiments and numerical simulations, Lab Chip, 7 (2007), 1336-1344.

[6]

S. M. Hagsäter, A. Lenshof, P. Skafte-Pedersen, J. P. Kutter, T. Laurell and H. Bruus, Acoustic resonances in straight micro channels: Beyond the 1d-approximation, Lab Chip, 8 (2008), 1178-1184.

[7]

M. F. Hamilton and C. L. Morfey, In: M.F. Hamilton and D.T. Blackstock, (eds.), Nonlinear Acoustics, Chap. 3, Academic Press, San Diego, (1998), 41-64.

[8]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation, Physics Letters A, 326 (2004), 77-84. doi: 10.1016/j.physleta.2004.03.067.

[9]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids, European Journal of Mechanics B-Fluids, 34 (2012), 56-63. doi: 10.1016/j.euromechflu.2012.01.016.

[10]

B. Kaltenbacher, Mathematics of nonlinear acoustics, Evolutiuon equations and control theory, 4 (2015), 447-491. doi: 10.3934/eect.2015.4.447.

[11]

R. S. Keiffer, R. McNorton, P. M. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids, Wave Motion, 48 (2011), 782-790. doi: 10.1016/j.wavemoti.2011.04.013.

[12]

V. P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust., 16 (1971), 467-470.

[13]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I, Acustica, 82 (1996), 579-606.

[14]

NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/,, Release 1.0.10 of 2015-08-07. Online companion to [OLBC10]., (): 2015. 

[15]

W. L. Nyborg, Acoustic streaming, Physical Acoustics, 2 (1965), 265-331. doi: 10.1016/B978-0-12-395662-0.50015-1.

[16]

A. R. Rasmussen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids, Acta Appl. Math., 115 (2011), 43-61. doi: 10.1007/s10440-010-9581-7.

[17]

Anders Rønne Rasmussen, Thermoviscous Model Equations in Nonlinear Acoustics, Ph.D Thesis, Department of Mathematics, Technical University of Denmark in Kongens Lyngby, Denmark, 2009.

show all references

References:
[1]

B. O. Enflo and C. M. Hedberg, Theory of Nonlinear Acoustics in Fluids, $1^{st}$ edition, Kluwer Academic, Dordrecht, 2002.

[2]

W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech., 18 (1964), 44-64. doi: 10.1017/S0022112064000040.

[3]

I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation, Q. Jl Mech. Appl. Math., 60 (2007), 473-495. doi: 10.1093/qjmam/hbm017.

[4]

I. Christov, C. I. Christov and P. M. Jordan, Corrigendum and addendum: Modeling weakly nonlinear acoustic wave propagation, Q. Jl Mech. Appl. Math., 68 (2015), 231-233. doi: 10.1093/qjmam/hbu023.

[5]

S. M. Hagsäter, T. G. Jensen, H. Bruus and J. P. Kutter, Acoustic resonances in piezo-actuated microfluidic chips: Full-image micro-piv experiments and numerical simulations, Lab Chip, 7 (2007), 1336-1344.

[6]

S. M. Hagsäter, A. Lenshof, P. Skafte-Pedersen, J. P. Kutter, T. Laurell and H. Bruus, Acoustic resonances in straight micro channels: Beyond the 1d-approximation, Lab Chip, 8 (2008), 1178-1184.

[7]

M. F. Hamilton and C. L. Morfey, In: M.F. Hamilton and D.T. Blackstock, (eds.), Nonlinear Acoustics, Chap. 3, Academic Press, San Diego, (1998), 41-64.

[8]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation, Physics Letters A, 326 (2004), 77-84. doi: 10.1016/j.physleta.2004.03.067.

[9]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids, European Journal of Mechanics B-Fluids, 34 (2012), 56-63. doi: 10.1016/j.euromechflu.2012.01.016.

[10]

B. Kaltenbacher, Mathematics of nonlinear acoustics, Evolutiuon equations and control theory, 4 (2015), 447-491. doi: 10.3934/eect.2015.4.447.

[11]

R. S. Keiffer, R. McNorton, P. M. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids, Wave Motion, 48 (2011), 782-790. doi: 10.1016/j.wavemoti.2011.04.013.

[12]

V. P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust., 16 (1971), 467-470.

[13]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I, Acustica, 82 (1996), 579-606.

[14]

NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/,, Release 1.0.10 of 2015-08-07. Online companion to [OLBC10]., (): 2015. 

[15]

W. L. Nyborg, Acoustic streaming, Physical Acoustics, 2 (1965), 265-331. doi: 10.1016/B978-0-12-395662-0.50015-1.

[16]

A. R. Rasmussen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids, Acta Appl. Math., 115 (2011), 43-61. doi: 10.1007/s10440-010-9581-7.

[17]

Anders Rønne Rasmussen, Thermoviscous Model Equations in Nonlinear Acoustics, Ph.D Thesis, Department of Mathematics, Technical University of Denmark in Kongens Lyngby, Denmark, 2009.

[1]

Ivan C. Christov. Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids. Evolution Equations and Control Theory, 2016, 5 (3) : 349-365. doi: 10.3934/eect.2016008

[2]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[3]

James K. Knowles. On shock waves in solids. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 573-580. doi: 10.3934/dcdsb.2007.7.573

[4]

Barbara Kaltenbacher. Mathematics of nonlinear acoustics. Evolution Equations and Control Theory, 2015, 4 (4) : 447-491. doi: 10.3934/eect.2015.4.447

[5]

Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[6]

Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009

[7]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[8]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[9]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[10]

Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661

[11]

Adrien Dekkers, Anna Rozanova-Pierrat, Vladimir Khodygo. Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4231-4258. doi: 10.3934/dcds.2020179

[12]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[13]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[14]

Anna Geyer, Ronald Quirchmayr. Weakly nonlinear waves in stratified shear flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2309-2325. doi: 10.3934/cpaa.2022061

[15]

David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057

[16]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[17]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[18]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[19]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

[20]

Pedro M. Jordan, Barbara Kaltenbacher. Introduction to the special volume ``Mathematics of nonlinear acoustics: New approaches in analysis and modeling''. Evolution Equations and Control Theory, 2016, 5 (3) : i-ii. doi: 10.3934/eect.201603i

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (182)
  • HTML views (0)
  • Cited by (0)

[Back to Top]