# American Institute of Mathematical Sciences

September  2016, 5(3): 431-448. doi: 10.3934/eect.2016012

## Nonlinear diffusion equations in fluid mixtures

 1 DIBRIS, University of Genoa, Via Opera Pia 11A, 16145 Genoa, Italy

Received  October 2015 Revised  November 2015 Published  August 2016

The whole set of balance equations for chemically-reacting fluid mixtures is established. The diffusion flux relative to the barycentric reference is shown to satisfy a first-order, non-linear differential equation. This in turn means that the diffusion flux is given by a balance equation, not by a constitutive assumption at the outset. Next, by way of application, limiting properties of the differential equation are shown to provide Fick's law and the Nernst-Planck equation. Moreover, known generalized forces of the literature prove to be obtained by appropriate constitutive assumptions on the stresses and the interaction forces. The entropy inequality is exploited by letting the constitutive functions of any constituent depend on temperature, mass density and their gradients thus accounting for nonlocality effects. Among the results, the generalization of the classical law of mass action is provided. The balance equation for the diffusion flux makes the system of equations for diffusion hyperbolic, provided heat conduction and viscosity are disregarded. This is ascertained by the analysis of discontinuity waves of order 2 (acceleration waves). The wave speed is derived explicitly in the case of binary mixtures.
Citation: Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012
##### References:

show all references

##### References:
 [1] Yanheng Ding, Fukun Zhao. On a diffusion system with bounded potential. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 1073-1086. doi: 10.3934/dcds.2009.23.1073 [2] Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189 [3] Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427 [4] Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 [5] Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246 [6] L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45 [7] B. Anwasia, M. Bisi, F. Salvarani, A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinetic & Related Models, 2020, 13 (1) : 63-95. doi: 10.3934/krm.2020003 [8] Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161 [9] Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042 [10] Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 [11] Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 767-786. doi: 10.3934/dcds.2010.27.767 [12] Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 [13] Francisco Guillén-González, Mamadou Sy. Iterative method for mass diffusion model with density dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 823-841. doi: 10.3934/dcdsb.2008.10.823 [14] Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 [15] Svetlana Katok, Ilie Ugarcovici. Theory of $(a,b)$-continued fraction transformations and applications. Electronic Research Announcements, 2010, 17: 20-33. doi: 10.3934/era.2010.17.20 [16] Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 [17] Svetlana Katok, Ilie Ugarcovici. Structure of attractors for $(a,b)$-continued fraction transformations. Journal of Modern Dynamics, 2010, 4 (4) : 637-691. doi: 10.3934/jmd.2010.4.637 [18] Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033 [19] Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173 [20] Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106

2020 Impact Factor: 1.081