\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Controllability of a basic cochlea model

Abstract Related Papers Cited by
  • Two variations of a basic model for a cochlea are described which consist of a basilar membrane coupled with a linear potential fluid. The basilar membrane is modeled as an array of oscillators which may or may not include longitudinal elasticity. The fluid is assumed to be a linear potential fluid described by Laplace's equation in a domain that surrounds the basilar membrane. The problem of controllability of the system is considered with control active on a portion of the basilar membrane. Approximate controllability is proved for both models and moreover lack of exact controllability is shown to hold when longitudinal stiffness is not included.
    Mathematics Subject Classification: Primary: 93B05, 93C20; Secondary: 74F10, 74K15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. von Békésy, Experiments in Hearing McGraw-Hill Inc., New York, 1960.

    [2]

    Isaak Chepkwony, Analysis and Control Theory of some Cochlea Models, Ph.D. thesis, Department of Mathematics, Iowa State University, Ames, IA, 2006.

    [3]

    S. W. Hansen, Exact controllability of an elastic membrane coupled with a potential fluid, Int. J. Appl. Math. Comput. Sci., 11 (2001), 1231-1248.

    [4]

    S. W. Hansen and A. Lyashenko, Exact controllability of a beam in an incompressible inviscid fluid, Disc. Cont. Dyn. Syst., 3 (1997), 59-78.

    [5]

    H. L. F. von Helmoltz, On the sensations of tone as a physiological basis for the theory of music, (Translation by A. J. Ellis of Die Lehre von den Tonempfindungen als physiologiche Grundlage für die Theorie der Musik: Verlag von Fr. Vieweg u. Sohn. 4th ed., 1877; originally published 1863) Dover, New York, 1954.

    [6]

    J. B. Keller and J. C. Neu, Asymptotic analysis of a viscous cochlear model, J. Acoust. Soc. Amer., 77 (1985), 2107-2110.doi: 10.1121/1.391735.

    [7]

    R. J. Leveque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques, SIAM J. Applied Math., 45 (1988), 450-464.doi: 10.1137/0145026.

    [8]

    R. J. Leveque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity, SIAM J. Applied Math., 48 (1988), 191-213.doi: 10.1137/0148009.

    [9]

    J. Lighthill, Energy flow in the cochlea, J. Fluid Mech., 106 (1981), 149-213.doi: 10.1017/S0022112081001560.

    [10]

    R. D. Luce, Sound and Hearing. A Conceptual Introduction, Lawrence Erlbaum Assoc. Inc., Publishers, Hillsdale, New Jersey, 1993.

    [11]

    G. A. Manley and R. R. Fay, Active Processes and Otoacoustic Emissions in Hearing, Springer Science & Business Media 30, 2007.

    [12]

    J. Nečas, Les Méthodes Directes en théorie des équations Elliptiques. Paris: Masson, 1967.

    [13]

    S. T. Neely, Mathematical modeling of cochlear mechanics, J. Acoust. Soc. Am., 78 (1985), 345-352.doi: 10.1121/1.392497.

    [14]

    S. T. Neely and D. O. Kim, An active cochlear model showing sharp tuning and high sensitivity, Hearing Research, 9 (1983) 123-130.doi: 10.1016/0378-5955(83)90022-9.

    [15]

    A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [16]

    O. F. Ranke, Theory of operation of cochlear: A contribution to the hydrodynamics of the cochlear, J. Acoust. Soc. Am., 22 (1950), 772-777.

    [17]

    W. S. Rhode, Observations of the vibration of the Basilar Membrane in squirrel monkeys using the Mössbauer technique, Journal of the Acoustical Society of America, 49 (1971), 1218-1231.

    [18]

    J. Xin, Dispersive instability and its minimization in time-domain computation of steady-state responses of cochlea models, J. Acoust. Soc. Am., 115 (2004), 2173-2177.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return