December  2016, 5(4): 561-566. doi: 10.3934/eect.2016019

Remark on an elastic plate interacting with a gas in a semi-infinite tube: Periodic solutions

1. 

Kharkiv Karazin National University, 4 Svobody sq., 61077 Kharkiv, Ukraine

Received  January 2016 Revised  February 2016 Published  October 2016

We consider a conservative system consisting of an elastic plate interacting with a gas filling a semi-infinite tube. The plate is placed on the bottom of the tube. The dynamics of the gas velocity potential is governed by the linear wave equation. The plate displacement satisfies the linear Kirchhoff equation. We show that this system possesses an infinite number of periodic solutions with the frequencies tending to infinity. This means that the well-known property of decaying of local wave energy in tube domains does not hold for the system considered.
Citation: Igor Chueshov. Remark on an elastic plate interacting with a gas in a semi-infinite tube: Periodic solutions. Evolution Equations and Control Theory, 2016, 5 (4) : 561-566. doi: 10.3934/eect.2016019
References:
[1]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999 (in Russian); English translation: Acta, Kharkov, 2002; see also http://www.emis.de/monographs/Chueshov/

[2]

I. Chueshov, Dynamics of von Karman plate in a potential flow of gas: rigorous results and unsolved problems, Proceedings of the 16th IMACS World Congress, Lausanne (Switzerland), 2000, 1-6.

[3]

I. Chueshov, E. Dowell, I. Lasiecka and J. T. Webster, Von Karman plate in a gas flow: Recent results and conjectures, Appl. Math. Optim., 73 (2016), 475-500. doi: 10.1007/s00245-016-9349-1.

[4]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discr. Cont. Dyn. Sys., 15 (2006), 777-809. doi: 10.3934/dcds.2006.15.777.

[5]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Behavior, Monographs, {Springer-Verlag}, 2010. doi: 10.1007/978-0-387-87712-9.

[6]

I. Chueshov and I. Lasiecka, Generation of a semigroup and hidden regularity in nonlinear subsonic flow-structure interactions with absorbing boundary conditions. Jour. Abstr. Differ. Equ. Appl., 3 (2012), 1-27.

[7]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping, Comm. in PDE, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.

[8]

I. Chueshov, I. Lasiecka and J. T. Webster, Flow-plate interactions: Well-posedness and long-time behavior, Discrete Contin. Dyn. Syst. Ser. S, Special Volume: New Developments in Mathematical Theory of Fluid Mechanics, 7 (2014), 925-965. doi: 10.3934/dcdss.2014.7.925.

[9]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's, CMBS-NSF Lecture Notes, SIAM Publications, 2002. doi: 10.1137/1.9780898717099.

[10]

I. Lasiecka and J. T. Webster, Eliminating flutter for clamped von Karman plates immersed in subsonic flows, Comm. Pure Appl. Math., 13 (2014), 1935-1969, Updated version (May, 2015): Arxiv:1409.3308v5. doi: 10.3934/cpaa.2014.13.1935.

[11]

I. Lasiecka and J. T. Webster, Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow, SIAM J. Math. Anal., 48 (2016), 1848-1891. doi: 10.1137/15M1040529.

[12]

H. F. Walker, Some remarks on the local energy decay of solutions of the initial-boundary value problem for the wave equation in unbounded domains, J. Diff. Eqs., 23 (1977), 459-471. doi: 10.1016/0022-0396(77)90123-1.

show all references

References:
[1]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999 (in Russian); English translation: Acta, Kharkov, 2002; see also http://www.emis.de/monographs/Chueshov/

[2]

I. Chueshov, Dynamics of von Karman plate in a potential flow of gas: rigorous results and unsolved problems, Proceedings of the 16th IMACS World Congress, Lausanne (Switzerland), 2000, 1-6.

[3]

I. Chueshov, E. Dowell, I. Lasiecka and J. T. Webster, Von Karman plate in a gas flow: Recent results and conjectures, Appl. Math. Optim., 73 (2016), 475-500. doi: 10.1007/s00245-016-9349-1.

[4]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discr. Cont. Dyn. Sys., 15 (2006), 777-809. doi: 10.3934/dcds.2006.15.777.

[5]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Behavior, Monographs, {Springer-Verlag}, 2010. doi: 10.1007/978-0-387-87712-9.

[6]

I. Chueshov and I. Lasiecka, Generation of a semigroup and hidden regularity in nonlinear subsonic flow-structure interactions with absorbing boundary conditions. Jour. Abstr. Differ. Equ. Appl., 3 (2012), 1-27.

[7]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping, Comm. in PDE, 39 (2014), 1965-1997. doi: 10.1080/03605302.2014.930484.

[8]

I. Chueshov, I. Lasiecka and J. T. Webster, Flow-plate interactions: Well-posedness and long-time behavior, Discrete Contin. Dyn. Syst. Ser. S, Special Volume: New Developments in Mathematical Theory of Fluid Mechanics, 7 (2014), 925-965. doi: 10.3934/dcdss.2014.7.925.

[9]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's, CMBS-NSF Lecture Notes, SIAM Publications, 2002. doi: 10.1137/1.9780898717099.

[10]

I. Lasiecka and J. T. Webster, Eliminating flutter for clamped von Karman plates immersed in subsonic flows, Comm. Pure Appl. Math., 13 (2014), 1935-1969, Updated version (May, 2015): Arxiv:1409.3308v5. doi: 10.3934/cpaa.2014.13.1935.

[11]

I. Lasiecka and J. T. Webster, Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow, SIAM J. Math. Anal., 48 (2016), 1848-1891. doi: 10.1137/15M1040529.

[12]

H. F. Walker, Some remarks on the local energy decay of solutions of the initial-boundary value problem for the wave equation in unbounded domains, J. Diff. Eqs., 23 (1977), 459-471. doi: 10.1016/0022-0396(77)90123-1.

[1]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[2]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[3]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[4]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[5]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[6]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[7]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations and Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[8]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[9]

Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3807-3830. doi: 10.3934/dcdsb.2020229

[10]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[11]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[12]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[13]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[14]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations and Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[15]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[16]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[17]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[18]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[19]

Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136

[20]

Xiaoxiao Zheng, Hui Wu. Orbital stability of periodic traveling wave solutions to the coupled compound KdV and MKdV equations with two components. Mathematical Foundations of Computing, 2020, 3 (1) : 11-24. doi: 10.3934/mfc.2020002

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]