This paper is concerned with a distributed optimal control problem for a nonlocal phase field model of Cahn-Hilliard type, which is a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion. local model has been investigated in a series of papers by P. Podio-Guidugli and the present authors nonlocal model here studied consists of a highly nonlinear parabolic equation coupled to an ordinary differential inclusion of subdifferential type. The inclusion originates from a free energy containing the indicator function of the interval in which the order parameter of the phase segregation attains its values. It also contains a nonlocal term modeling long-range interactions. Due to the strong nonlinear couplings between the state variables (which even involve products with time derivatives), the analysis of the state system is difficult. In addition, the presence of the differential inclusion is the reason that standard arguments of optimal control theory cannot be applied to guarantee the existence of Lagrange multipliers. In this paper, we employ recent results proved for smooth logarithmic potentials and perform a so-called 'deep quench' approximation to establish existence and first-order necessary optimality conditions for the nonsmooth case of the double obstacle potential.
Citation: |
V. Barbu
, Necessary conditions for nonconvex distributed control problems governed by elliptic variational inequalities, J. Math. Anal. Appl., 80 (1981)
, 566-597.
doi: 10.1016/0022-247X(81)90125-6.![]() ![]() ![]() |
|
V. Barbu
, M. L. Bernardi
, P. Colli
and G. Gilardi
, Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109 (2001)
, 557-585.
doi: 10.1023/A:1017563604922.![]() ![]() ![]() |
|
H. Brézis,
Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973.
![]() ![]() |
|
P. Colli
, M. H. Farshbaf-Shaker
, G. Gilardi
and J. Sprekels
, Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015)
, 2696-2721.
doi: 10.1137/140984749.![]() ![]() ![]() |
|
P. Colli
, M. H. Farshbaf-Shaker
, G. Gilardi
and J. Sprekels
, Second-order analysis of a boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Ann. Acad. Rom. Sci. Math. Appl., 7 (2015)
, 41-66.
![]() ![]() |
|
P. Colli
, M. H. Farshbaf-Shaker
and J. Sprekels
, A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015)
, 1-24.
doi: 10.1007/s00245-014-9250-8.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Krejčí
, P. Podio-Guidugli
and J. Sprekels
, Analysis of a time discretization scheme for a nonstandard viscous Cahn-Hilliard system, ESAIM Math. Model. Numer. Anal., 48 (2014)
, 1061-1087.
doi: 10.1051/m2an/2014005.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Krejčí
and J. Sprekels
, A vanishing diffusion limit in a nonstandard system of phase field equations, Evol. Equ. Control Theory, 3 (2014)
, 257-275.
doi: 10.3934/eect.2014.3.257.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Krejčí
and J. Sprekels
, A continuous dependence result for a nonstandard system of phase field equations, Math. Methods Appl. Sci., 37 (2014)
, 1318-1324.
![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system, SIAM J. Appl. Math., 71 (2011)
, 1849-1870.
doi: 10.1137/110828526.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Global existence for a strongly coupled Cahn-Hilliard system with viscosity, Boll. Unione Mat. Ital., 5 (2012)
, 495-513.
![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn., 24 (2012)
, 437-459.
doi: 10.1007/s00161-011-0215-8.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Continuous dependence for a nonstandard Cahn-Hilliard system with nonlinear atom mobility, Rend. Sem. Mat. Univ. Politec. Torino, 70 (2012)
, 27-52.
![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013)
, 353-368.
doi: 10.3934/dcdss.2013.6.353.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity, J. Differential Equations, 254 (2013)
, 4217-4244.
doi: 10.1016/j.jde.2013.02.014.![]() ![]() ![]() |
|
P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, preprint, arXiv:1601.04567 [math.AP] (2016), 1-32.
![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012)
, 119-149.
doi: 10.1007/s00032-012-0181-z.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, Regularity of the solution to a nonstandard system of phase field equations, Rend. Cl. Sci. Mat. Nat., 147 (2013)
, 3-19.
![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015)
, 311-325.
doi: 10.1515/anona-2015-0035.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016)
, 195-225.
doi: 10.1007/s00245-015-9299-z.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, On an application of Tikhonov's fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation, J. Differential Equations, 260 (2016)
, 7940-7964.
doi: 10.1016/j.jde.2016.02.011.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
and J. Sprekels
, Distributed optimal control of a nonstandard nonlocal phase field system, AIMS Math., 1 (2016)
, 225-260.
doi: 10.3934/Math.2016.3.225.![]() ![]() |
|
S. Frigeri, M. Grasselli and J. Sprekels, Strong solutions and optimal distributed control of nonlocal Cahn-Hilliard/Navier-Stokes systems in 2D with singular potential and degenerate mobility, in preparation.
![]() |
|
S. Frigeri
, E. Rocca
and J. Sprekels
, Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016)
, 221-250.
doi: 10.1137/140994800.![]() ![]() ![]() |
|
M. Hinterm, T. Keil and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system with non-matched fluid densities, preprint, arXiv: 1506.03591 [math.AP] (2015), 1-35.
![]() |
|
M. Hintermüller
and D. Wegner
, Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density, SIAM J. Control Optim., 50 (2012)
, 388-418.
doi: 10.1137/110824152.![]() ![]() ![]() |
|
M. Hintermüller
and D. Wegner
, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system, SIAM J. Control Optim., 52 (2014)
, 747-772.
doi: 10.1137/120865628.![]() ![]() ![]() |
|
M. Hintermüller
and D. Wegner
, Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies, Isaac Newton Institute Preprint Series, (2014)
, 1-29.
![]() |
|
P. Podio-Guidugli
, Models of phase segregation and diffusion of atomic species on a lattice, Ric. Mat., 55 (2006)
, 105-118.
doi: 10.1007/s11587-006-0008-8.![]() ![]() ![]() |
|
E. Rocca
and J. Sprekels
, Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in three dimensions, SIAM J. Control Optim., 53 (2015)
, 1654-1680.
doi: 10.1137/140964308.![]() ![]() ![]() |
|
J. Simon
, Compact sets in the space Lp(0, T;B), Ann. Mat. Pura. Appl., 146 (1987)
, 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
|
Q.-F. Wang
and S.-i. Nakagiri
, Weak solutions of Cahn-Hilliard equations having forcing terms and optimal control problems, Mathematical models in functional equations (Japanese) (Kyoto, 1999), Sūrikaisekikenkyūsho Kõkyūroku, 1128 (2000)
, 172-180.
![]() ![]() |
|
X. Zhao
and C. Liu
, Optimal control of the convective Cahn-Hilliard equation, Appl. Anal., 92 (2013)
, 1028-1045.
doi: 10.1080/00036811.2011.643786.![]() ![]() ![]() |
|
X. Zhao
and C. Liu
, Optimal control for the convective Cahn-Hilliard equation in 2D case, Appl. Math. Optim., 70 (2014)
, 61-82.
doi: 10.1007/s00245-013-9234-0.![]() ![]() ![]() |