We prove a sharp decay rate for the total energy of two classes of systems of weakly coupled hyperbolic equations. We show that we can stabilize the full system through a single damping term, in feedback form, acting on one component only of the system (\emph{indirect stabilization}). The energy estimate is achieved by means of suitable estimates of the resolvent operator norm. We apply this technique to a wave-wave system and to a wave-Petrovsky system.
Citation: |
F. Alabau
, Stabilisation frontiére indirecte de systémes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999)
, 1015-1020.
doi: 10.1016/S0764-4442(99)80316-4.![]() ![]() ![]() |
|
F. Alabau
, P. Cannarsa
and V. Komornik
, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ., 2 (2002)
, 127-150.
doi: 10.1007/s00028-002-8083-0.![]() ![]() ![]() |
|
F. Alabau-Boussouira
, P. Cannarsa
and R. Guglielmi
, Indirect stabilization of weakly coupled systems with hybrid boundary conditions, Math. Control Relat. Fields, 1 (2011)
, 413-436.
doi: 10.3934/mcrf.2011.1.413.![]() ![]() ![]() |
|
F. Alabau-Boussouira
and M. Léautaud
, Indirect stabilization of locally coupled wave-type systems, ESAIM Control Optim. Calc. Var., 18 (2012)
, 548-582.
doi: 10.1051/cocv/2011106.![]() ![]() ![]() |
|
F. Alabau-Boussouira
and M. Léautaud
, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl. (9), 99 (2013)
, 544-576.
doi: 10.1016/j.matpur.2012.09.012.![]() ![]() ![]() |
|
W. Arendt
and C.J.K. Batty
, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988)
, 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3.![]() ![]() ![]() |
|
G. Avalos
and F. Bucci
, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, J. Differential Equations, 258 (2015)
, 4398-4423.
doi: 10.1016/j.jde.2015.01.037.![]() ![]() ![]() |
|
G. Avalos
, I. Lasiecka
and R. Triggiani
, Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system, In Optimal control of coupled systems of partial differential equations, volume 158 of Internat. Ser. Numer. Math, (2009)
, 1-33.
doi: 10.1007/978-3-7643-8923-9_1.![]() ![]() ![]() |
|
G. Avalos
, I. Lasiecka
and R. Triggiani
, Heat-wave interaction in 2-3 dimensions: Optimal rational decay rate, J. Math. Anal. Appl., 437 (2016)
, 782-815.
doi: 10.1016/j.jmaa.2015.12.051.![]() ![]() ![]() |
|
G. Avalos
and R. Triggiani
, Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evol. Equ. Control Theory, 2 (2013)
, 233-253.
doi: 10.3934/eect.2013.2.233.![]() ![]() ![]() |
|
A. Bátkai
, K.-J. Engel
, J. Prüss
and R. Schnaubelt
, Polynomial stability of operator semigroups, Math. Nachr., 279 (2006)
, 1425-1440.
doi: 10.1002/mana.200410429.![]() ![]() ![]() |
|
C. J.K. Batty
and T. Duyckaerts
, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008)
, 765-780.
doi: 10.1007/s00028-008-0424-1.![]() ![]() ![]() |
|
A. Borichev
and Y. Tomilov
, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010)
, 455-478.
doi: 10.1007/s00208-009-0439-0.![]() ![]() ![]() |
|
R. Dáger and E. Zuazua,
Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, volume 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3.![]() ![]() ![]() |
|
B. Dehman
, J. Le Rousseau
and M. Léautaud
, Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., 211 (2014)
, 113-187.
doi: 10.1007/s00205-013-0670-4.![]() ![]() ![]() |
|
M. Eller, I. Lasiecka and R. Triggiani, Simultaneous exact/approximate boundary controllability of thermo-elastic plates with variable transmission coefficient, In Shape optimization and optimal design (Cambridge, 1999), volume 216 of Lecture Notes in Pure and Appl. Math. , pages 109-230, Dekker, New York, 2001.
![]() |
|
R. Gulliver
, I. Lasiecka
, W. Littman
and R. Triggiani
, The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber, In Geometric methods in inverse problems and PDE control, volume 137 of IMA Vol. Math., (2004)
, 73-181.
doi: 10.1007/978-1-4684-9375-7_5.![]() ![]() ![]() |
|
V. Komornik, Exact Controllability and Stabilization RAM: Research in Applied Mathematics. Masson, Paris, 1994. The multiplier method.
![]() ![]() |
|
J. Lagnese and J. -L. Lions,
Modelling Analysis and Control of Thin Plates volume 6 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988.
![]() ![]() |
|
G. Lebeau, Équation des ondes amorties, In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud. , pages 73-109, Kluwer Acad. Publ. , Dordrecht, 1996.
![]() ![]() |
|
Yu. I. Lyubich
and Quôc Phóng Vû
, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988)
, 37-42.
![]() ![]() |
|
D.L. Russell
, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993)
, 339-358.
doi: 10.1006/jmaa.1993.1071.![]() ![]() ![]() |
|
L. Tebou
, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012)
, 45-60.
doi: 10.3934/mcrf.2012.2.45.![]() ![]() ![]() |
|
X. Zhang
and E. Zuazua
, Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction, in Free Boundary Problems, Internat. Ser. Numer. Math.,
154, Birkhäuser, Basel, (2007)
, 445-455.
doi: 10.1007/978-3-7643-7719-9_43.![]() ![]() ![]() |