March  2017, 6(1): 77-91. doi: 10.3934/eect.2017005

Identification problems of retarded differential systems in Hilbert spaces

Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

* Corresponding author: Jin-Mun Jeong

Received  October 2015 Revised  August 2016 Published  December 2016

This paper deals with the identification problem for the $L^1$-valued retarded functional differential equation. The unknowns are parameters and operators appearing in the given systems. In order to identify the parameters, we introduce the solution semigroup and the structural operators in the initial data space, and provide the representations of spectral projections and the completeness of generalized eigenspaces. The sufficient condition for the identification problem is given as the so called rank condition in terms of the initial values and eigenvectors of adjoint operator.

Citation: Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005
References:
[1]

S. Agmon, On the eigenfunctions and the eigenvalues of general elliptic boundary value problems, Comm. Pure. Appl. Math., 15 (1962), 119-147.  doi: 10.1002/cpa.3160150203.

[2]

J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 119-147.  doi: 10.1007/BF02384306.

[3]

D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach space valued functions, Proc. Conf. Harmonic Analysis, University of Chicago, 1 (1981), 270-286. 

[4]

P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-verlag Belin-Heidelberg-NewYork, 1967. doi: 10.1007/978-3-642-64981-3.

[5]

G. Di BlasioK. Kunisch and E. Sinestrari, $L^2-$regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102 (1984), 38-57.  doi: 10.1016/0022-247X(84)90200-2.

[6]

G. Di Blasio and A. Lorenzi, Identification problems for integro-differential delay equations, Differential Integral Equations, 16 (2003), 1385-1408. 

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.  doi: 10.1007/BF01163654.

[8]

J. M. Jeong, Retarded functional differential equations with $L^1$-valued controller, Funkcial. Ekvac., 36 (1993), 71-93. 

[9]

J. M. Jeong, Supplement to the paper ''Retarded functional differential equations with $L^1$-valued controller", Funkcial. Ekvac., 38 (1995), 267-275. 

[10]

J. M. Jeong, Spectral properties of the operator associated with a retarded functional differential equation in Hilbert space, Proc. Japan Acad., 65A (1989), 98-101.  doi: 10.3792/pjaa.65.98.

[11]

S. Kitamura and S. Nakagiri, Identifiability of spatially varying and constant parameters in distributes systems of parabolic type, SIAM J. Control & Optim., 15 (1977), 785-802.  doi: 10.1137/0315050.

[12]

C. Kravaris and J. H. Seinfeld, Identifiability of spatially-varying conductivity from point observation as an inverse Sturm-Liouville problem, SIAM J. Control & Optim., 24 (1986), 522-542.  doi: 10.1137/0324030.

[13]

S. Lenhart and C. C. Travis, Stability of functional partial differential equations, J. Differential Equation, 58 (1985), 212-227.  doi: 10.1016/0022-0396(85)90013-0.

[14]

A. Manitius, Completeness and F-completeness of eigenfunctions associated with retarded functional differential equation, J. Differential Equations, 35 (1980), 1-29.  doi: 10.1016/0022-0396(80)90045-5.

[15]

S. Nakagiri, Identifiability of linear systems in Hilbert spaces, SIAM J. Control & Optim., 21 (1983), 501-530.  doi: 10.1137/0321031.

[16]

S. Nakagiri and M. Yamamoto, Identifiability of linear retarded systems in Banach space, Funkcial. Ekvac., 31 (1988), 315-329. 

[17]

S. Nakagiri, Controllability and identifiability for linear time-delay systems in Hilbert space. Control theory of distributed parameter systems and applications, Lecture Notes in Control and Inform. Sci. , 159, Springer, Berlin, (1991), 116-125. doi: 10.1007/BFb0004443.

[18]

S. Nakagiri, Structural properties of functional differential equations in Banach spaces, Osaka J. Math., 25 (1988), 353-398. 

[19]

S. Nakagiri and H. Tanabe, Structural operators and eigenmanifold decomposition for functional differential equations in Hilbert space, J. Math. Anal. Appl., 204 (1996), 554-581.  doi: 10.1006/jmaa.1996.0454.

[20]

A. Pierce, Unique identification of eigenvalues and coefficients in a parabolic problems, SIAM J. Control & Optim., 17 (1979), 494-499.  doi: 10.1137/0317035.

[21]

R. Seeley, Norms and domains of the complex power $A_B^Z$, Amer. J. Math., 93 (1971), 299-309.  doi: 10.2307/2373377.

[22]

R. Seeley, Interpolation in $L^p$ with boundary conditions, Studia Math., 44 (1972), 47-60. 

[23]

T. Suzuki, Uniquenee and nonuniqueness in an inverse problem for theparabolic problem, J. Differential Equations, 47 (1983), 294-316.  doi: 10.1016/0022-0396(83)90038-4.

[24]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations Marcel Dekker. Inc. /New York, Basel, Hong Kong, 1997.

[25]

H. Triebel, Interpolation Theory, Functional Spaces, Differential Operators North-Holland, 1978. doi: DIO.

[26]

M. Yamamoto and S. Nakagiri, Identiability of operators for evolution equations in Banach spaces with an application to transport equations, J. Math. Anal. Appl., 186 (1994), 161-181.  doi: 10.1006/jmaa.1994.1292.

[27]

K. Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

show all references

References:
[1]

S. Agmon, On the eigenfunctions and the eigenvalues of general elliptic boundary value problems, Comm. Pure. Appl. Math., 15 (1962), 119-147.  doi: 10.1002/cpa.3160150203.

[2]

J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 119-147.  doi: 10.1007/BF02384306.

[3]

D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach space valued functions, Proc. Conf. Harmonic Analysis, University of Chicago, 1 (1981), 270-286. 

[4]

P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-verlag Belin-Heidelberg-NewYork, 1967. doi: 10.1007/978-3-642-64981-3.

[5]

G. Di BlasioK. Kunisch and E. Sinestrari, $L^2-$regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102 (1984), 38-57.  doi: 10.1016/0022-247X(84)90200-2.

[6]

G. Di Blasio and A. Lorenzi, Identification problems for integro-differential delay equations, Differential Integral Equations, 16 (2003), 1385-1408. 

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.  doi: 10.1007/BF01163654.

[8]

J. M. Jeong, Retarded functional differential equations with $L^1$-valued controller, Funkcial. Ekvac., 36 (1993), 71-93. 

[9]

J. M. Jeong, Supplement to the paper ''Retarded functional differential equations with $L^1$-valued controller", Funkcial. Ekvac., 38 (1995), 267-275. 

[10]

J. M. Jeong, Spectral properties of the operator associated with a retarded functional differential equation in Hilbert space, Proc. Japan Acad., 65A (1989), 98-101.  doi: 10.3792/pjaa.65.98.

[11]

S. Kitamura and S. Nakagiri, Identifiability of spatially varying and constant parameters in distributes systems of parabolic type, SIAM J. Control & Optim., 15 (1977), 785-802.  doi: 10.1137/0315050.

[12]

C. Kravaris and J. H. Seinfeld, Identifiability of spatially-varying conductivity from point observation as an inverse Sturm-Liouville problem, SIAM J. Control & Optim., 24 (1986), 522-542.  doi: 10.1137/0324030.

[13]

S. Lenhart and C. C. Travis, Stability of functional partial differential equations, J. Differential Equation, 58 (1985), 212-227.  doi: 10.1016/0022-0396(85)90013-0.

[14]

A. Manitius, Completeness and F-completeness of eigenfunctions associated with retarded functional differential equation, J. Differential Equations, 35 (1980), 1-29.  doi: 10.1016/0022-0396(80)90045-5.

[15]

S. Nakagiri, Identifiability of linear systems in Hilbert spaces, SIAM J. Control & Optim., 21 (1983), 501-530.  doi: 10.1137/0321031.

[16]

S. Nakagiri and M. Yamamoto, Identifiability of linear retarded systems in Banach space, Funkcial. Ekvac., 31 (1988), 315-329. 

[17]

S. Nakagiri, Controllability and identifiability for linear time-delay systems in Hilbert space. Control theory of distributed parameter systems and applications, Lecture Notes in Control and Inform. Sci. , 159, Springer, Berlin, (1991), 116-125. doi: 10.1007/BFb0004443.

[18]

S. Nakagiri, Structural properties of functional differential equations in Banach spaces, Osaka J. Math., 25 (1988), 353-398. 

[19]

S. Nakagiri and H. Tanabe, Structural operators and eigenmanifold decomposition for functional differential equations in Hilbert space, J. Math. Anal. Appl., 204 (1996), 554-581.  doi: 10.1006/jmaa.1996.0454.

[20]

A. Pierce, Unique identification of eigenvalues and coefficients in a parabolic problems, SIAM J. Control & Optim., 17 (1979), 494-499.  doi: 10.1137/0317035.

[21]

R. Seeley, Norms and domains of the complex power $A_B^Z$, Amer. J. Math., 93 (1971), 299-309.  doi: 10.2307/2373377.

[22]

R. Seeley, Interpolation in $L^p$ with boundary conditions, Studia Math., 44 (1972), 47-60. 

[23]

T. Suzuki, Uniquenee and nonuniqueness in an inverse problem for theparabolic problem, J. Differential Equations, 47 (1983), 294-316.  doi: 10.1016/0022-0396(83)90038-4.

[24]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations Marcel Dekker. Inc. /New York, Basel, Hong Kong, 1997.

[25]

H. Triebel, Interpolation Theory, Functional Spaces, Differential Operators North-Holland, 1978. doi: DIO.

[26]

M. Yamamoto and S. Nakagiri, Identiability of operators for evolution equations in Banach spaces with an application to transport equations, J. Math. Anal. Appl., 186 (1994), 161-181.  doi: 10.1006/jmaa.1994.1292.

[27]

K. Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[1]

Martins Bruveris. Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 2015, 7 (2) : 125-150. doi: 10.3934/jgm.2015.7.125

[2]

B. Cantó, C. Coll, E. Sánchez. The problem of global identifiability for systems with tridiagonal matrices. Conference Publications, 2011, 2011 (Special) : 250-257. doi: 10.3934/proc.2011.2011.250

[3]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[4]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[5]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[6]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[7]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[8]

Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056

[9]

Zeng-Zhen Tan, Rong Hu, Ming Zhu, Ya-Ping Fang. A dynamical system method for solving the split convex feasibility problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 2989-3011. doi: 10.3934/jimo.2020104

[10]

Daniel G. Alfaro Vigo, Amaury C. Álvarez, Grigori Chapiro, Galina C. García, Carlos G. Moreira. Solving the inverse problem for an ordinary differential equation using conjugation. Journal of Computational Dynamics, 2020, 7 (2) : 183-208. doi: 10.3934/jcd.2020008

[11]

Abbas Ja'afaru Badakaya, Aminu Sulaiman Halliru, Jamilu Adamu. Game value for a pursuit-evasion differential game problem in a Hilbert space. Journal of Dynamics and Games, 2022, 9 (1) : 1-12. doi: 10.3934/jdg.2021019

[12]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021069

[13]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[14]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[15]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[16]

Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure and Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929

[17]

Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems and Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23

[18]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks and Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

[19]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems and Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[20]

Yinzheng Sun, Qin Wang, Kyungwoo Song. Subsonic solutions to a shock diffraction problem by a convex cornered wedge for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4899-4920. doi: 10.3934/cpaa.2020217

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (147)
  • HTML views (143)
  • Cited by (0)

Other articles
by authors

[Back to Top]