[1]
|
H. Brezis,
Analyse Fonctionelle Masson, Paris, 1983.
|
[2]
|
J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N.
|
[3]
|
G. W. Clark and S. F. Oppenheimer,
Quasireversibility methods for non-well posed problems,
Elect. J. Diff. Eqns. , (1994), approx. 9 pp.
|
[4]
|
M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, J. Math. Anal. Appl., 301 (2005), 419-426.
doi: 10.1016/j.jmaa.2004.08.001.
|
[5]
|
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413-3442.
doi: 10.1155/S0161171203301486.
|
[6]
|
X. L. Feng, L. Elden and C. L. Fu, Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region, J. Math. Comp. Simulation, 79 (2008), 177-188.
doi: 10.1016/j.matcom.2007.11.005.
|
[7]
|
M. Ginoa, S. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Phys. A, 191 (1992), 449-453.
doi: 10.1016/0378-4371(92)90566-9.
|
[8]
|
J. Hadamard,
Lectures on the Cauchy Problem in Linear Differential Equations Yale University Press, New Haven, CT, 1923.
|
[9]
|
Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Res., 34 (1998), 10271033.
doi: 10.1029/98WR00214.
|
[10]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Application of Fractional Differnetial Equations, North -Holland Mathematics Studies, vol. 204, Elsevier Science B. V, Amsterdam, 2006.
|
[11]
|
R. Lattés and J. -L. Lions,
Méthode de Quasi-réversibilité et Applications Dunod, Paris, 1967.
|
[12]
|
J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal., 89 (2010), 1769-1788.
doi: 10.1080/00036810903479731.
|
[13]
|
Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141-160.
doi: 10.2478/s13540-012-0010-7.
|
[14]
|
Y. Luchko, Maximum principle and its application for the time-fractional diffusion equations, Fract. Calc. Appl. Anal., 14 (2011), 110-124.
doi: 10.2478/s13540-011-0008-6.
|
[15]
|
R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125.
doi: 10.1016/S0378-4371(99)00503-8.
|
[16]
|
R. Nigmatulin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B, 133 (1986), 425-430.
doi: 10.1002/pssb.2221330150.
|
[17]
|
I. Podlubny,
Fractional Differential Equations, Academic Press, San Diego, 1999.
|
[18]
|
C. Ren, X. Xu and S. Lu, Regularization by projection for a backward problem of the timefractional diffusion equation, J. Inverse Ill-Posed Probl., 22 (2014), 121-139.
doi: 10.1515/jip-2011-0021.
|
[19]
|
H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A, 27 (1994), 3407-3410.
doi: 10.1088/0305-4470/27/10/017.
|
[20]
|
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusionwave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058.
|
[21]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev,
Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, (1993).
|
[22]
|
R. E. Showalter, Quasi-reversibility of first and second order parabolic evolution equations, in
Improperly posed boundary value problems (Conf., Univ. New Mexico, Albuquerque, N. M.,
1974), Res. Notes in Math., Pitman, London, 1 (1975), 76-84.
|
[23]
|
D. D. Trong and N. H. Tuan, Regularization and error estimates for nonhomogeneous backward heat problems, Electron. J. Diff. Eqns., 2006 (2006), 1–10.
|
[24]
|
J. G. Wang, T. Wei and B. Y. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Appl. Math. Model., 37 (2013), 8518-8532.
doi: 10.1016/j.apm.2013.03.071.
|