March  2017, 6(1): 135-154. doi: 10.3934/eect.2017008

The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework

Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA

Received  October 2016 Revised  August 2016 Published  December 2016

In this paper, we study a fluid-structure interaction model of Stokes-wave equation coupling system with Kelvin-Voigt type of damping. We show that this damped coupling system generates an analyticity semigroup and thus the semigroup solution, which also satisfies variational framework of weak solution, decays to zero at exponential rate.

Citation: Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008
References:
[1]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid-structure interaction. Part Ⅰ: Explicit semigroup generator and its spectral properties, AMS Contemporary Mathematics, Fluids and Waves, 440 (2007), 15-55.  doi: 10.1090/conm/440/08475.

[2]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, Georgian Math. J. , Special issue dedicated to the memory of J. L. Lions, 15 (2008), 403-437.

[3]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. Cont. Dynam. Sys., 22 (2008), 817-833.  doi: 10.3934/dcds.2008.22.817.

[4]

G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370.  doi: 10.1007/s00028-009-0015-9.

[5]

G. Avalos and R. Triggiani, Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability, Evolution Equations and Control Theory, 2 (2013), 563-598.  doi: 10.3934/eect.2013.2.563.

[6]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society, 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.

[7]

V. Barbu, Nonlinear Semigroup and Differential Equations in Banach Spaces, Springer, 1976.

[8]

V. BarbuZ. GrujicI. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008), 1773-1207.  doi: 10.1512/iumj.2008.57.3284.

[9]

V. BarbuZ. GrujicI. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Contemporary Mathematics, 440 (2007), 55-82.  doi: 10.1090/conm/440/08476.

[10]

S. CanicB. Muha and M. Bukac, Stability of the Kinematically Coupled $β$-Scheme for fluid-structure interaction problems in hemodynamics, International Journal for Numerical Analysis and Modeling, 12 (2015), 54-80. 

[11]

S. Chen and R. Triggiani, Proof of the extensions of two conjectures on structural damping for elastic system, Pacific Journal of Mathematics, 36 (1989), 15-55.  doi: 10.2140/pjm.1989.136.15.

[12]

S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $ 0 < \alpha < \frac{1}{2}$, Proc. Amer. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.

[13]

C. ClasonB. Kaltenbacher and S. Veljović, Boundary optimal control of the Westervelt and the Kuznetsov equation, J. Math. Anal. Appl., 356 (2009), 738-751.  doi: 10.1016/j.jmaa.2009.03.043.

[14]

D. Coutand and S. Shkoller, Motion of an elastic inside an incompressible viscous fluid, Arch. Rational Mech. Anal., 176 (2005), 25-102.  doi: 10.1016/j.jmaa.2009.03.043.

[15]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type Memoirs Amer. Math. Soc. 166 (2003), viii+114 pp. doi: 10.1090/memo/0788.

[16]

W. DeschM. Hieber and J. Pruss, $L_p$ theory of the Stokes equation in a half space, J. Evolution Eqns, 1 (2001), 115-142.  doi: 10.1007/PL00001362.

[17]

W. Desch and W. Schappacher, Some perturbation results for analytic semigroups, Mathematische Annalen, 281 (1988), 157-162.  doi: 10.1007/BF01449222.

[18]

Q. DuM. D. GunzburgerL. S. Hou and J. Lee, Analysis of a linear-fluid structure interaction model, Discr. Dynam. Sys., 9 (2003), 633-650.  doi: 10.3934/dcds.2003.9.633.

[19]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ space, Mathematische Zeiscrift, 178 (1981), 297-329.  doi: 10.1007/BF01214869.

[20]

Y. Giga, Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Tokyo Univ., 19 (1983), 887-910.  doi: 10.2977/prims/1195182014.

[21]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.

[22]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discr. Cont. Dynam. Sys., Series S, 2 (2009), 503-523.  doi: 10.3934/dcdss.2009.2.503.

[23]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations, Appl. Math. & Opti., 62 (2010), 381-410.  doi: 10.1007/s00245-010-9108-7.

[24]

I. KukavicaA. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Diff. Eq., 247 (2009), 1452-1478.  doi: 10.1016/j.jde.2009.06.005.

[25]

I. KukavicaA. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, Adv. Diff. Eq., 15 (2010), 231-254.  doi: 10.1016/j.jde.2009.06.005.

[26]

I. Lasiecka, Mathematical Control Theory of Coupled PDEs SIAM, 2002. doi: 10.1137/1.9780898717099.

[27]

I. Lasiecka and Y. Lu, Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction, Semigroup Forum, 82 (2011), 61-82.  doi: 10.1007/s00233-010-9281-7.

[28]

I. Lasiecka and Y. Lu, Interface feedback control stabilization to a nonlinear fluid-structure interaction model, Nonlinear Anal., 75 (2012), 1449-1460.  doi: 10.1016/j.na.2011.04.018.

[29]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, I: Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74 Cambridge University Press, 2000.

[30]

I. Lasiecka and R. Triggiani, Heat-structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers, Communications on Pure and Applied Analysis, 15 (2016).  doi: 10.3934/cpaa.2016001.

[31]

K. Liu and Z. Liu, Analyticity and differentiability of semigroups associated with elastic systems with damping and Gyroscopitc forces, J. Diff. Eq., 141 (1997), 340-355.  doi: 10.1006/jdeq.1997.3331.

[32]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems Chapman & Hall/ CRC Research Notes in Mathematics, 1999.

[33]

S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Appl. Math. and Opti., 64 (2011), 257-271.  doi: 10.1007/s00245-011-9138-9.

[34]

B. Muha and S. Canic, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Archives for Rational Mechanics and Analysis, 207 (2013), 919-296871.  doi: 10.1007/s00205-012-0585-5.

[35]

B. Muha and S. Canic, Existence of a solution to a fluid-multi-layered-structure interaction problem, Journal of Differential Equations, 256 (2014), 658-706.  doi: 10.1016/j.jde.2013.09.016.

[36]

N. $\ddot{O}$zkaya, M. Nordin, D. Goldsheyder and D. Leger, Fundamentals of Biomechanics-Equilibrium, Motion, and Deformation Springer-Verlag, New York, 2012.

[37]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[38]

J. Pruss, On the spectrum of $C_0$ semigroup, Transactions of American Mathematics Society, 284 (1984), 847-857.  doi: 10.2307/1999112.

[39]

G. Simonett and M. Wilke, Well-posedness and long-time behaviour for the Westervelt equation with absorbing boundary conditions of order zero, To appear in in J. of Evol. Eqns.

[40]

R. Triggiani, A heat-viscoelastic structure interaction model with Neumann or Dirichlet boundary control at the interface: optimal regularity, control theoretic implications, Applied Mathematics and Optimization, special issue in memory of A. V. Balakrishnan, 73(3) (2016), 571-594. doi: 10.1007/s00245-016-9348-2.

[41]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction, Arch. Rat. Mech. Anal., 184 (2007), 49-120.  doi: 10.1007/s00205-006-0020-x.

show all references

References:
[1]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid-structure interaction. Part Ⅰ: Explicit semigroup generator and its spectral properties, AMS Contemporary Mathematics, Fluids and Waves, 440 (2007), 15-55.  doi: 10.1090/conm/440/08475.

[2]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, Georgian Math. J. , Special issue dedicated to the memory of J. L. Lions, 15 (2008), 403-437.

[3]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. Cont. Dynam. Sys., 22 (2008), 817-833.  doi: 10.3934/dcds.2008.22.817.

[4]

G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370.  doi: 10.1007/s00028-009-0015-9.

[5]

G. Avalos and R. Triggiani, Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability, Evolution Equations and Control Theory, 2 (2013), 563-598.  doi: 10.3934/eect.2013.2.563.

[6]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society, 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.

[7]

V. Barbu, Nonlinear Semigroup and Differential Equations in Banach Spaces, Springer, 1976.

[8]

V. BarbuZ. GrujicI. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008), 1773-1207.  doi: 10.1512/iumj.2008.57.3284.

[9]

V. BarbuZ. GrujicI. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Contemporary Mathematics, 440 (2007), 55-82.  doi: 10.1090/conm/440/08476.

[10]

S. CanicB. Muha and M. Bukac, Stability of the Kinematically Coupled $β$-Scheme for fluid-structure interaction problems in hemodynamics, International Journal for Numerical Analysis and Modeling, 12 (2015), 54-80. 

[11]

S. Chen and R. Triggiani, Proof of the extensions of two conjectures on structural damping for elastic system, Pacific Journal of Mathematics, 36 (1989), 15-55.  doi: 10.2140/pjm.1989.136.15.

[12]

S. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $ 0 < \alpha < \frac{1}{2}$, Proc. Amer. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.

[13]

C. ClasonB. Kaltenbacher and S. Veljović, Boundary optimal control of the Westervelt and the Kuznetsov equation, J. Math. Anal. Appl., 356 (2009), 738-751.  doi: 10.1016/j.jmaa.2009.03.043.

[14]

D. Coutand and S. Shkoller, Motion of an elastic inside an incompressible viscous fluid, Arch. Rational Mech. Anal., 176 (2005), 25-102.  doi: 10.1016/j.jmaa.2009.03.043.

[15]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type Memoirs Amer. Math. Soc. 166 (2003), viii+114 pp. doi: 10.1090/memo/0788.

[16]

W. DeschM. Hieber and J. Pruss, $L_p$ theory of the Stokes equation in a half space, J. Evolution Eqns, 1 (2001), 115-142.  doi: 10.1007/PL00001362.

[17]

W. Desch and W. Schappacher, Some perturbation results for analytic semigroups, Mathematische Annalen, 281 (1988), 157-162.  doi: 10.1007/BF01449222.

[18]

Q. DuM. D. GunzburgerL. S. Hou and J. Lee, Analysis of a linear-fluid structure interaction model, Discr. Dynam. Sys., 9 (2003), 633-650.  doi: 10.3934/dcds.2003.9.633.

[19]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ space, Mathematische Zeiscrift, 178 (1981), 297-329.  doi: 10.1007/BF01214869.

[20]

Y. Giga, Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Tokyo Univ., 19 (1983), 887-910.  doi: 10.2977/prims/1195182014.

[21]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.

[22]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discr. Cont. Dynam. Sys., Series S, 2 (2009), 503-523.  doi: 10.3934/dcdss.2009.2.503.

[23]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations, Appl. Math. & Opti., 62 (2010), 381-410.  doi: 10.1007/s00245-010-9108-7.

[24]

I. KukavicaA. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Diff. Eq., 247 (2009), 1452-1478.  doi: 10.1016/j.jde.2009.06.005.

[25]

I. KukavicaA. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, Adv. Diff. Eq., 15 (2010), 231-254.  doi: 10.1016/j.jde.2009.06.005.

[26]

I. Lasiecka, Mathematical Control Theory of Coupled PDEs SIAM, 2002. doi: 10.1137/1.9780898717099.

[27]

I. Lasiecka and Y. Lu, Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction, Semigroup Forum, 82 (2011), 61-82.  doi: 10.1007/s00233-010-9281-7.

[28]

I. Lasiecka and Y. Lu, Interface feedback control stabilization to a nonlinear fluid-structure interaction model, Nonlinear Anal., 75 (2012), 1449-1460.  doi: 10.1016/j.na.2011.04.018.

[29]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, I: Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74 Cambridge University Press, 2000.

[30]

I. Lasiecka and R. Triggiani, Heat-structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers, Communications on Pure and Applied Analysis, 15 (2016).  doi: 10.3934/cpaa.2016001.

[31]

K. Liu and Z. Liu, Analyticity and differentiability of semigroups associated with elastic systems with damping and Gyroscopitc forces, J. Diff. Eq., 141 (1997), 340-355.  doi: 10.1006/jdeq.1997.3331.

[32]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems Chapman & Hall/ CRC Research Notes in Mathematics, 1999.

[33]

S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Appl. Math. and Opti., 64 (2011), 257-271.  doi: 10.1007/s00245-011-9138-9.

[34]

B. Muha and S. Canic, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Archives for Rational Mechanics and Analysis, 207 (2013), 919-296871.  doi: 10.1007/s00205-012-0585-5.

[35]

B. Muha and S. Canic, Existence of a solution to a fluid-multi-layered-structure interaction problem, Journal of Differential Equations, 256 (2014), 658-706.  doi: 10.1016/j.jde.2013.09.016.

[36]

N. $\ddot{O}$zkaya, M. Nordin, D. Goldsheyder and D. Leger, Fundamentals of Biomechanics-Equilibrium, Motion, and Deformation Springer-Verlag, New York, 2012.

[37]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[38]

J. Pruss, On the spectrum of $C_0$ semigroup, Transactions of American Mathematics Society, 284 (1984), 847-857.  doi: 10.2307/1999112.

[39]

G. Simonett and M. Wilke, Well-posedness and long-time behaviour for the Westervelt equation with absorbing boundary conditions of order zero, To appear in in J. of Evol. Eqns.

[40]

R. Triggiani, A heat-viscoelastic structure interaction model with Neumann or Dirichlet boundary control at the interface: optimal regularity, control theoretic implications, Applied Mathematics and Optimization, special issue in memory of A. V. Balakrishnan, 73(3) (2016), 571-594. doi: 10.1007/s00245-016-9348-2.

[41]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction, Arch. Rat. Mech. Anal., 184 (2007), 49-120.  doi: 10.1007/s00205-006-0020-x.

Figure 1.  THE FLUID–STRUCTURE INTERACTION
[1]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[2]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[3]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[4]

Ahmed Bchatnia, Nadia Souayeh. Eventual differentiability of coupled wave equations with local Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1317-1338. doi: 10.3934/dcdss.2022098

[5]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[6]

Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021059

[7]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[8]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[9]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[10]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[11]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[12]

Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031

[13]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations and Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[14]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[15]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[16]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[17]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[18]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control and Related Fields, 2021, 11 (4) : 885-904. doi: 10.3934/mcrf.2020050

[19]

Mikhail Turbin, Anastasiia Ustiuzhaninova. Pullback attractors for weak solution to modified Kelvin-Voigt model. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022011

[20]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations and Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (191)
  • HTML views (136)
  • Cited by (3)

Other articles
by authors

[Back to Top]